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Abstract

This work presents the development of a prototype expert system (ES) for the machine selection of manufacturing systems. This tool,

called ESMRS (Expert System for Manufacturing Resource Selection) is used in a simulation based approach in order to structure the

solution search mechanism and to overcome the try and error aspect. In fact, in such an approach a number of ‘simulation—ES optimization’

cycles are run until obtaining non-improvable performance measures. The ES main role is to suggest resource modifications based on due

date related performance measures obtained through simulation. So, this paper introduces the ‘ES—simulation approach’ that constitutes the

utilization scope of ESMRS and then describes the ES static and dynamic knowledge representation before presenting the basic ES features

as well as its development using a commercial ES shell. Finally a simple case study illustrates the validity of the approach and its potential

applicability for real cases.
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1. Introduction

The resource selection problem is defined as the

specification of the number of each type of resources to

use in a manufacturing system (MS) for a given planning

horizon. Mainly, the approaches that dealt with this problem

are either analytical or simulation-based methods. The latter

are iterative approaches strongly associated with ‘try and

error’ (Bullinger & Sauer, 1987; Peng, Skinner, & Mason,

2001), whereas the former are based on mathematical

models connecting parameters like production needs and

resource capacities to the required resource quantities (De

Matta, Hsu, & Lowe, 1999; Lin & Yang, 1996; Miller &

Davis, 1977). Unlike simulation based approaches, the

analytical ones are limited to small size problems due to the

difficulty of handling the mathematical formulations. In

addition they are deterministic and tackle the resource

selection problem independently from other problems such

as scheduling and layout. Moreover, they do not consider
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the dynamic and the stochastic aspects inherent to certain

manufacturing factors like demand. Hence the results

obtained by these methods lack robustness.

Besides, artificial intelligence techniques such as expert

systems (ES) were used in several MS design fields such as

layout and capacity planning (Jayaraman & Srivastava,

1996) but very rarely in the resource selection context. In

fact, an ES was used by Kusiak (1987, 1990) to decide,

according to the available data and to the problem size,

which mathematical model and which resolution algorithm

to use.

This work presents the development of an ES for MSs

machine selection, called ESMRS (Expert System for

Manufacturing Resource Selection). This tool is used in a

simulation based approach in order to structure the solution

search mechanism and to overcome the try and error aspect.

Its main role is to suggest resource modifications based on

performance measures obtained through simulation.

So, the remaining of this paper is organized as follows.

First, Section 2 introduces the Expert System Simulation

Approach (ESSA) that constitutes the utilization scope of

ESMRS. Then, Section 3 describes the ES static and

dynamic knowledge representation, whereas Section 4

presents the basic ES features as well as its development
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using a commercial ES shell. Afterwards, an application

intended to validate the developed ES is discussed in

Section 5. Finally, Section 6 is dedicated to conclusion and

future work perspectives.
2. Expert system simulation approach
2.1. Concept

In this approach, the simulation tool utilizes the data of

an arbitrary feasible initial MS as well as the demand pattern

to simulate the realization of a typical manufacturing order

(MO) set over a period of time corresponding to a given

planning horizon. Steady state simulation results are then

considered as performance measures of the system. These

results, in addition to user prescribed performance limits as

well as the MS data and the demand pattern constitute the

ES required inputs. This tool is in charge of analyzing the

MS situation. If the simulated system performance is found

to be improvable, the ES recommends a modification to its

resources in order to overcome the problem considered to be

the most responsible for the low performance. Conse-

quently, a new cycle is run until the ES is no more able to

suggest any modifications (see Fig. 1).

Despite the fact that the proposed approach is not

restricted neither to one type of resources nor to a particular

layout, this paper is focused on the specific machine

selection problem of a job shop type MS with no labor

constraints. Moreover, all products are manufactured by

batches of a constant size following the launching of MOs.

Finally, the material handling system is bi-directional and

covers the totality of the departments.
Fig. 1. Overview of the ESA.
2.2. Performance measures

In a competitive ‘make to order’ manufacturing context,

the main priority is to minimize mean batch tardiness (MT)

in order to avoid associated penalties. On the other hand, it

is also important to minimize mean batch earliness (ME)

and its related extra storage costs. It is worth mentioning

here that each MO due date is obtained by multiplying its

total work content (TWK) by a user defined factor K. TWK

is the sum of all processing and transportation times

required to complete the MO in an ideal situation, where

neither waiting nor setup are required, whilst K expresses

the DD strictness as required by the user.

Moreover, another performance measure is crucial for

the determination of the department representing a potential

bottleneck. It is the average number of batches waiting in

machine queue (nw). Finally, each department utilization

rate (ur) should be calculated in order to make sure it is

bounded by a higher limit expressing the average machine

availability and a lower limit depending on its acquisition

cost.
3. Knowledge representation

Two main kinds of knowledge constitutes the core of any

ES, also called knowledge based system: the static and the

dynamic knowledge. The former is the group of concepts

describing the expertise domain, whereas the latter is the

reasoning mechanism. Both are exploited by the ES

inference engine either to inductively answer a question or

to deductively generate new facts. The next sub sections

describe the static knowledge representation through a set of

objects and the dynamic knowledge representation using

sets of production rules.

3.1. Static knowledge

In the job shop machine selection problem using the

ESSA, the main concepts are: optimization objective,

performance measures, machine departments, performance

limits and optimization history. Theses concepts are

modeled using an object based formalism in which each

object is defined by a set of private data called attributes and

a set of intrinsic functions called methods. Objects are also

categorized into classes and sub-classes and both attributes

and methods are inheritable. The main objects that served to

model the problem concepts are depicted in Table 1 that also

presents their main attributes. For the sake of brevity, this

table presents only the objects and attributes necessary to

understand the expertise domain as well as the reasoning

mechanism presented in the following section. For the same

reason, the objects methods are not discussed here.

Besides, it is worth noting here that the number of

‘Machine department i’ objects corresponds to the effective

number of machine departments of the job shop. Moreover,



Table 1

Main objects description

Object Attribute

Name Description

Machine department i nbr Number of machines

nw Mean number of batches waiting

wt Mean waiting time of a batch

ur Mean machine utilization rate

tumax Maximum allowable utilization rate

tumin Minimum allowable utilization rate

us Utilization state (ok, over utilized, under utilized)

pb Diagnosed problem (lack or surplus of machines)

Departmenta Res List of all machine departments (descendents)

ResLackO List of machine departments with a machine lack problem

(sorted by decreasing nw and wt as tiebreaker)

ResSurplusO List of machine departments with a machine surplus problem

(sorted by increasing UR)

Global performance MT Mean tardiness (actual cycle value)

MA Mean advance (actual cycle value)

MSS Manufacturing system state according to the no performance

deterioration constraint (ok, NO)

History MT Mean tardiness (last cycle value)

MA Mean advance (last cycle value)

Solj Solution of approach cycle number j

a Plus all the ‘Department i’ attributes, defined for inheritance purpose only.
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all these objects are descendents of the ‘Department’ object

and hence, all their attributes and methods are inherited

from this object in which they are defined but not used.

Furthermore, the ‘History’ object should have as many

Solj as previous ESSA cycles. These attributes are intended

to verify that the proposed solution do not correspond to any

previously obtained one in order to avoid infinite looping.
3.2. Dynamic knowledge

The dynamic knowledge, also called ‘know-how’ can be

schematized by a general resolution procedure in which

each function or step is realized by a set of production rules.

The resolution procedure for the job shop machine selection

problem through the ESSA is shown in Fig. 2.

In fact, the first ES task is to make sure that the last

cycle recommendation did not significantly deteriorate the

MS performance. If this test is conclusive, a new cycle

starts by updating the best solution if a significant

improvement is observed. If not, a new iteration of the

previous cycle will take place by trying to recuperate non-

explored recommendations from the previous cycle.

Subsequently, the ES first tries to diagnose all tardiness

problems before trying to make the MS compliant with

utilization rate constraints. The earliness minimization

objective comes then in the third importance rank. This

ranking also governs the first test. Therefore for example, if

a significant improvement of the utilization rates implies a

significant increasing of tardiness, the corresponding

recommendation is simply cancelled. In such a case, the

ES recuperates and then proposes the next element from

the last cycle recommendation list.
Once all problems are diagnosed, the ES tries to establish

the list of corresponding feasible recommendations. Such

recommendations should ensure the feasibility of all

MOs without generating a previously obtained solution.

Then, the ES ranks the feasible recommendations according

to the severity of the related problems. Thus, a ‘lack of

resource’ problem is more critical than a surplus situation. In

addition, ‘lack of resource’ problem solutions are ranked by

decreasing nw order of their corresponding departments,

whereas the more severe ‘surplus of resource’ problem

corresponds to the department with the lowest utilization

rate. It is worth mentioning here that the absence of

feasible recommendation means the end of the procedure.

Besides and as previously mentioned, every element of this

general resolution procedure is realized by a set of production

rules. These are written by means of the previously declared

‘object: attribute’ pairs. Table 2 gives four examples of

generic rules constituting the core of the problem diagnosis

task. These rules apply for every object D belonging to the

class ‘Machine department i’ and use the writing convention
4. Expert system development

An ES shell was used to develop a prototype of the

hybrid Expert System for Manufacturing Resource Selec-

tion (ESMRS). This development tool uses an object

oriented knowledge representation formalism as well as

production rules (Intellicorp, 1991). It also features an

inference engine of the first order capable of forward as well

as backward chaining. The first mode was used in the

present application in order to solve the machine selection



Fig. 2. ES general problem solving procedure.
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problem in a deductive way. Furthermore, the ‘breadth first’

option was preferred over the ‘depth first’ in order to

diagnose a maximum number of problems before the

chaining stops.

The shell also permitted the development of a user

friendly interface allowing the introduction of MS data and

performance measures as well as the visualization of

recommendations together with appropriate explanation. A

context dependent help was also developed for the

application. Fig. 3 depicts the main interface screen of the

prototype ES realized for a maximum of five machine

departments.
5. Application

A simple case application is here presented for a

preliminary validation of developed ES. The MS to be

sized is a job shop composed of five machine departments

(M1–M5). The typical demand pattern consists of single

product MOs launched at given frequencies (Poisson law)

and characterized by a certain batch size (BS). In addition

each type of product (P1–P3) is characterized by a specific

routing resulting in a specific total work content (TWK)

obtained by summing up the processing times (PTs) on all

workstations and the needed transport times. The setup



Table 2

Generic diagnosis production rules

Function (context) Rule

Lack diagnosis (Tardiness) If [GlobalPerformance:MSS Z ZOK] Then

AND [GlobalPerformance: MTOGlobalPerformance: Thsld] D:pbZlack

AND [D:nwO0]

Lack diagnosis (urOurmax) If [GlobalPerformance:MSSZ ZOK] Then

AND [D:urOZD:urmax] D:pbZlack

Surplus diagnosis (Earliness) If [GlobalPerformance:MSSZ ZOK] Then

AND [GlobalPerformance: MEOGlobalPerformance: Thsld] D:pbZSurplus

AND [D:nwZ Z0]

AND [D:ur!ZD:urmax]

AND [D:nbrO1]

Surplus diagnosis (Earliness) If [GlobalPerformance:MSSZ ZOK] Then

AND [GlobalPerformance:ME OGlobalPerformance: Thsld] D:pbZSurplus

AND [GlobalPerformance: MT!GlobalPerformance: Thsld]

AND [D:ur!ZD:urmin]

AND [D:nbrO1]
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times (STs), governed by a triangular law, are not

included in the TWK since this parameter is calculated

for the most favorable situation, where the machines

are already set for the same product. For each MO, the

DD is set to be the product of factor expressing its

tightness by its corresponding TWK. The main

characteristics of the MS and the demand pattern are

recapitulated in Table 3.
Fig. 3. ESMRS us
An arbitrary initial solution, consisting of assigning n

machines to machine department number n, was considered.

And the first simulation run showed that most likely,

department M1 is the most critical bottleneck (see first line

of Table 4). Consequently, the first of the ES issued

recommendation list was ‘addition of a machine in depart-

ment 1’. This recommendation was taken into account and a

second simulation was run. Since no deterioration was noticed
er interface.



Table 3

Application characteristics

Product type Manufacturing data Demand data

Routing (dept) PT (min) ST (min) TWK (min) BS Inter-arrival law (min)

P1 M3 20 Triangular (115,120,125) 790 10 Poisson (120)

M1 25 Triangular (20,25,30)

M2 30 Triangular (25,30,35)

P2 M2 5 Triangular (25,30,35) 840 20 Poisson (120)

M3 15 Triangular (95,100,105)

M4 20 Triangular (100,105,110)

P3 M1 10 Triangular (20,25,30) 1240 30 Poisson (120)

M4 10 Triangular (145,150,155)

M5 20 Triangular (70,75,80)
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the addition of a machine in department M1 is then accepted

and the ES could start finding other problems. Furthermore,

since a significant improvement has been noticed the best

solution was also updated. Hence 13 cycles were needed in

order to obtain a non-improvable solution consisting of (5; 4;

5; 7; 5) machines in departments M1–M5, respectively.

It is worth noting here that the last cycle did not generate

any conclusive recommendation. Besides and for the sake of

clarity, all unfeasible recommendations were displayed in a

crossed format. For instance, removal of a machine from
Table 4

Results of the various cycles of optimization

Cycle Machine number nw ur

M1 M2 M3 M4 M5 M1 M2 M3 M4 M5 M1

1 1 2 3 4 5 566 0 311 0 0 100

2 2 2 3 4 5 299 0 282 0 0 100

3 3 2 3 4 5 104 77 200 44 0 100

4 3 2 4 4 5 188 143 0 68 0 100

5 4 2 4 4 5 0 264 0 71 0 95

6 4 3 4 4 5 0 0 48 213 0 93

7 4 3 4 5 5 0 0 48 62 0 93

8 4 3 4 6 5 0 0 45 0 0 94

9 4 3 5 6 5 0 0 0 0 0 94

10 4 4 5 6 5 0 0 0 0 0 93

11 4 4 5 7 5 0 0 0 0 0 94

12 5 4 5 7 5 0 0 0 0 0 75

13 5 3 5 7 5 0 0 0 0 0 77

13 4 4 5 7 5 0 0 0 0 0 93

13 5 4 5 6 5 0 0 0 0 0 75

13 5 4 5 7 4 0 0 0 0 0 74

13 5 4 4 7 5 0 0 0 0 0 75

C, machine addition; K, machine removal.
department M4 in cycle 8 was judged unfeasible since it

would bring the MS to its previous state and hence will

cause infinite looping.

Finally, in order to illustrate the robustness of the

approach regarding the initial solution, another optimization

study is started using the same data but with a

different initial MS. In fact, departments M1–M5 started

with (7; 6; 5; 4; 3) machines, respectively. As it could be

seen from Table 5, the same final solution was reached using

11 cycles.
MT MA ES recommen-

dations

Solution

update
M2 M3 M4 M5

52 100 61 24 27,298 0 CM1CM3K

M5KM2KM4

Yes

78 100 88 50 18,660 115 CM1CM3K
M5KM2KM4

Yes

100 100 100 64 12,118 691 CM3CM1C

M2CM4KM5

Yes

100 91 100 55 11,464 378 CM1CM2C

M4CM3KM5

Yes

100 81 100 70 8700 2072 CM2CM4C

M1KM5KM3

Yes

89 100 100 59 5431 1695 CM4CM3C

M1CM2KM5

Yes

86 100 100 73 674 3813 CM4CM3C

M1KM5KM2

Yes

90 100 88 77 0 6298 CM3CM1C

M2KM5KM4

Yes

95 82 91 77 0 8447 CM2CM1C
M4KM5KM3

Yes

69 83 93 77 0 8451 CM4CM1K

M2KM5KM3

Yes

69 83 77 77 0 8498 CM1KM2K
M5KM4KM3

Yes

69 83 76 77 0 8510 KM2KM1K

M4KM5KM3

Yes

95 81 76 76 0 8479 KM1KM4K
M5KM3

No

69 83 77 77 0 8493 KM4KM5K

M3

No

68 83 91 77 0 8498 KM5KM3 No

68 83 77 100 0 8462 KM3 No

63 100 76 77 0 5613 END No



Table 5

Results of the various cycles of optimization with different initial system

Cycle Machine number nw ur MT MA ES recommen-

dations

Solution

update
M1 M2 M3 M4 M5 M1 M2 M3 M4 M5 M1 M2 M3 M4 M5

1 7 6 5 4 3 0 0 0 250 0 53 45 83 100 95 5819 3157 CM4CM5K

M2KM1KM3

Yes

2 7 6 5 5 3 0 0 0 87 67 53 45 84 100 100 2109 3510 CM4CM5K

M2KM1KM3

Yes

3 7 6 5 6 3 0 0 0 0 112 52 46 84 92 100 1799 5496 CM5CM4K

M2KM1KM3

Yes

4 7 6 5 6 4 0 0 0 0 2 53 45 83 91 100 0 8413 CM5CM4K

M2KM1KM3

Yes

5 7 6 5 6 5 0 0 0 0 0 53 46 84 91 77 0 8486 CM4KM2K

M1KM5KM3

Yes

6 7 6 5 7 5 0 0 0 0 0 53 45 82 77 76 0 8513 KM2KM1K

M5KM4KM3

Yes

7 7 5 5 7 5 0 0 0 0 0 53 54 82 77 76 0 8513 KM1KM2K
M5KM4KM3

Yes

8 6 5 5 7 5 0 0 0 0 0 62 54 82 77 76 0 8513 KM2KM1K

M5KM4KM3

Yes

9 6 4 5 7 5 0 0 0 0 0 63 69 82 76 77 0 8507 KM1KM2K
M4KM5KM3

Yes

10 5 4 5 7 5 0 0 0 0 0 75 69 83 76 77 0 8510 KM2KM1K

M4KM5KM3

Yes

11 5 3 5 7 5 0 0 0 0 0 77 95 81 76 76 0 8479 KM1KM4K
M5KM3

No

11 4 4 5 7 5 0 0 0 0 0 93 69 83 77 77 0 8493 KM4KM5K

M3

No

11 5 4 5 6 5 0 0 0 0 0 75 68 83 91 77 0 8498 KM5KM3 No

11 5 4 5 7 4 0 0 0 0 0 74 68 83 77 100 0 8462 KM3 No

11 5 4 4 7 5 0 0 0 0 0 75 63 100 76 77 0 5613 END No

C, machine addition; K, machine removal.
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6. Conclusion

This work presented the development of an ES used in a

simulation based approach in order to structure the solution

search mechanism. A prototype of this ES has been

developed and tested. This rule based and object oriented

tool permitted to obtain satisfactory preliminary results in

the sizing of a simple MS belonging to predefined domain of

application.

However, many aspects of the approach, are currently

being developed. In fact, the main issue is the enlargement

of the domain of application by incorporating other types of

resources and by considering resource reliability and

routing flexibility. This should allow applying and validat-

ing the approach on real cases. Consequently, the ES

reasoning mechanism should be enriched by incorporating

new knowledge acquired from sets of planned simulations.

Finally, a thorough investigation of the approach robustness

should be conducted in order to assess its applicability in

various scenarios.
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