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Abstract

Traditionally, the resource-constrained project scheduling problem (RCPSP) is modeled as a static and deterministic
problem and is solved with the objective of makespan minimization. However, many uncertainties, such as unpredictable
increases in processing times caused by rework or supplier delays, random transportation and/or setup, may render the
proposed solution obsolete. In this paper, we present a two-stage algorithm for robust resource-constrained project sched-
uling. The first stage of the algorithm solves the RCPSP for minimizing the makespan only using a priority-rule-based heu-
ristic, namely an enhanced multi-pass random-biased serial schedule generation scheme. The problem is then similarly
solved for maximizing the schedule robustness while considering the makespan obtained in the first stage as an acceptance
threshold. Selection of the best schedule in this phase is based on one out of 12 alternative robustness predictive indicators
formulated for the maximization purpose. Extensive simulation testing of the generated schedules provides strong evidence
of the benefits of considering robustness of the schedules in addition to their makespans. For illustration purposes, for 10
problems from the well-known standard set J30, both robust and non-robust schedules are executed with a 10% duration
increase that is applied to the same randomly picked 20% of the project activities. Over 1000 iterations per instance prob-
lem, the robust schedules display a shorter makespan in 55% of the times while the non-robust schedules are shown to be
the best performing ones in only 6% of the times.
� 2008 Elsevier Ltd. All rights reserved.
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1. Introduction

The resource-constrained project scheduling problem (RCPSP) deals with the allocation of scarce resources
to a set of interrelated activities that are usually related by precedence constraints and directed toward some
major goal. Due to its practical importance in various industrial fields (construction, product and process
design, implementation of communication systems, etc.), the RCPSP continuously attracts the attention of
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researchers and project managers. A vast amount of literature addressed the RCPSP solution using either opti-
mization or heuristic approaches (Demeulemeester and Herroelen, 2002; Kolisch and Hartmann, 1999).
Despite the fact that the RCPSP is inherently multi-objective, it is more often solved deterministically for min-
imizing the project makespan (Cmax).

However, Icmeli-Tukel and Rom (1998) revealed that, from a practical perspective, the project planners
consider that maximizing the schedule quality should be considered as the main criterion. Such a quality is
related to three aspects: performance, conformance and robustness of the schedule. The first two aspects cor-
respond to minimizing the makespan while respecting the precedence and resource constraints. On the other
hand, the deterministic scheduling outcome may be seriously jeopardized by the uncertainties characterizing
the environment in which the project is actually executed. Such uncertainties include rework caused by quality
deficit, machine breakdowns, employee absenteeism and delay in materials supply. All of these causes may
result in one or more project activities requiring more processing time than that anticipated in baseline sche-
dule. Hence, the schedule robustness may be defined as ‘‘its ability to cope with small increases in the time
duration of some activities that may result from uncontrollable factors’’ (Al Fawzan and Haouari, 2005).
When this robustness is measured in terms of project duration it is referred to as quality-robustness. However,
if it is measured in terms of the deviation between the planned and realized start times of the projected sche-
dule, it is referred to as solution-robustness or stability. An ideal schedule should combine both types (Van de
Vonder et al., 2005).

Recently, Herroelen and Leus (2004b, 2005) provided a survey of the various approaches of scheduling
under uncertainties. These approaches can be classified into four main scheduling categories: reactive, stochas-
tic, fuzzy and proactive.

In the first category, the generation of a baseline schedule is accomplished first with no anticipation of var-
iability. Second, various rules and heuristics are used in the project execution phase to correct the schedule in
case of disruption occurrence (Artigues and Roubellat, 2000; Calhoun et al., 2002). The corrective rules may
range from simple right shift of disruption-affected activities to complete rescheduling. Approaches belonging
to the category of stochastic project scheduling basically consider the RCPSP as a multi-stage decision process
requiring a priori knowledge about the distributions of activity time duration (Fernandez et al., 1996; Möhring
et al., 1984; Pet-Edwards et al., 1998). Their major shortcoming is a failure to provide a baseline schedule.

On the other hand, the fuzzy project scheduling approaches are based on the notion of fuzzy activity dura-
tion and produce fuzzy schedules (i.e. fuzzy start and finish times). The application of these approaches
requires the use of membership functions that define the activity duration distributions (Hapke and Slowinski,
2000; Wang, 2004). However, from a practical perspective, it may be difficult to estimate uncertainties that
affect the project execution. Hence, it may not be easy to determine realistic fuzzy membership functions
and stochastic activity duration distribution. This can seriously limit the domain of application of these
two categories of approaches.

As for the proactive scheduling category, robust schedules that account for variability are generated. This
category is also referred to as robust scheduling. The literature related to this topic is much more abundant in
the machine scheduling field than in that associated with the project scheduling. Goldratt (1997) applied the
theory of constraints to the RCPSP to propose the critical chain/buffer management (CC/BM) methodology.
This methodology is based on inserting time buffers into a good makespan schedule in order to improve its
quality-robustness. Although this methodology has gained a great popularity in the scientific and in the man-
agerial communities, Herroelen and Leus (2001) pointed a certain number of its pitfalls resulting from the
oversimplification of the RCPSP reality.

More recently, Herroelen and Leus (2004a) developed mathematical programming models for generating
stable (solution-robust) baseline schedules to face activity duration disruptions. Their approach, also based
on inserting time buffers in a pre-schedule, aims at the minimization of a function representing the cost of
overrunning or underrunning the start time of the activities. It makes abstraction of resource requirements.
Leus and Herroelen (2004) have dropped the hypothesis of unrestricted resource availability by using a
resource flow network for robust resource allocation to a feasible baseline schedule. A branch-and-bound
algorithm was proposed by the authors for this purpose.

Van de Vonder et al. (2005) addressed the issue of achieving a trade-off between quality-robustness and
solution-robustness for resource-unconstrained project scheduling. They used simulation in order to investi-
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gate whether it is beneficial to concentrate safety time in project and feeding buffers as in the original CC/BM
approach and a modified CC/BM approach developed in their paper, or whether it is preferable to spread time
buffers throughout the project schedule, as done by the adapted float factor model (ADFF) developed by Leus
(2003). A similar research, but with consideration of resource constraints, was presented by Van de Vonder
et al. (2006).

In addition, Al Fawzan and Haouari (2005) developed a multi-objective tabu search heuristic for solving a
bi-objective RCPSP. They considered the objectives of quality-robustness maximization along with makespan
minimization and used several variants of the algorithm in order to find an approximate set of efficient solu-
tions. Unlike the previously cited robust scheduling researches, Al Fawzan and Haouari (2005) do not advo-
cate buffer insertion and therefore, avoid the associated inevitable increase of the initial planned makespan.
Instead, they search the solution space for ‘‘naturally’’ robust schedules. Abbasi et al. (2006) proposed to solve
the same bi-objective RCPSP using a simulated annealing meta heuristic. However, as it is the case for all
multi-objective optimization problems, choosing a solution from the often-large approximate set of efficient
solutions is neither an obvious nor a simple task.

Finally, some researches in the single machine scheduling context used the flexibility concept rather than
robustness (Aloulou et al., 2002; Mauguiere et al., 2002). They propose schedules that may be decomposed
into several interchangeable fragments in case of disruption occurrence.

This study aims at developing a robust scheduling approach generating schedules that are invulnerable to
small increases in activity durations that may be caused by rework or supplier delays. It addresses the solution
of the single-mode RCPSP with renewable resources using a simple two-stage-priority-rule-based approach.
The RCPSP is first solved for minimum project duration then for maximum quality-robustness while avoiding
the bi-objective dilemma. It also proposes some efficient ‘‘predictive’’ robustness indicators intended to assist
the project managers in selecting the most robust schedule among a set of schedules sharing the same make-
span. Finally, this paper aims at demonstrating the benefits of using the robustness concept through extensive
simulation runs on a set of randomly generated benchmark problems.

The remainder of the paper is organized as follows: in Section 2, a formal definition of the RCPSP is given
along with the definitions of the priority rules and the robustness indicators required by the approach. Section
3 presents a detailed description of the proposed two-stage algorithm while the main results of the proposed
approach application on a set of benchmark problems are reported in Section 4. Finally, the general conclu-
sions and the directions for future research are presented in Section 5.

2. Notation and definitions

Formally, the single-mode RCPSP could be defined as follows: a project consists of a set I of n interrelated
activities (1, . . . ,n) related by precedence constraints which specify that activity i cannot be performed until all
its predecessors Pi have been finished. There are K renewable resources. A constant amount of Rk units of
resource k is continuously available from time zero onwards. The duration of activity i is pi units of time. Dur-
ing this time period a constant amount of rik units of resource k is occupied. Preemption is not allowed. The
objective is to determine starting (or finishing) times for the activities in such a way that a performance cri-
terion is optimized, the precedence constraints are satisfied, and at each unit of time the total resource demand
does not exceed the resource availability for each resource type. Two performance criteria are considered in
this approach:

• The makespan Cmax ¼ Max
i¼1; ... ; n

ðti þ piÞ is minimized
• A predictive robustness measure (RM) is maximized

In the remainder of this paper, the term ‘‘robustness’’ refers to quality-robustness. It represents the sche-
dule’s ability to cope with small increases in the time duration of some activities. In addition, no buffer inser-
tion is advocated for schedule robustness enhancement. The presented approach aims at selecting from a set of
schedules sharing a ‘‘very good’’ makespan the one offering the best intrinsic robustness. Actually, in order to
predict the robustness of a given schedule, 12 surrogate RMs are proposed and assessed through the simula-
tion study presented in Section 4. They all are based on the notion of activity free slack si defined as the



Table 1
Robustness measures

RM1 ¼
Pn

i¼1si RM5 ¼
Pn

i¼1ai RM9 ¼
Pn

i¼1 minðsi; frac � piÞ
RM2 ¼

Pn
i¼1si � NSucci RM6 ¼

Pn
i¼1ai � NSucci RM10 ¼

Pn
i¼1 minðsi; frac � piÞ � NSucci

RM3 ¼
Pn

i¼1 si �
PK

k¼1rik

� �
RM7 ¼

Pn
i¼1 ai �

PK
k¼1rik

� �
RM11 ¼

Pn
i¼1 minðsi; frac � piÞi �

PK
k¼1rik

� �

RM4 ¼
Pn

i¼1 si � NSucci �
PK

k¼1rik

� �
RM8 ¼

Pn
i¼1 ai � NSucci �

PK
k¼1rik

� �
RM12 ¼

Pn
i¼1 minðsi; frac � piÞ � NSucci �

PK
k¼1rik

� �

With NSucci: Number of immediate successors of activity i; i = 1 . . . ,n

ai = 1 if si > 0 and ai = 0 if si = 0 i; i = 1, . . . ,n

0 < frac < 1
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amount of time that an activity i (i = 1, . . . ,n) can slip without delaying the start of any of its immediate suc-
cessors while upholding resource feasibility. Free slack is calculated by si = LSi � ESi where ESi(LSi) is the
earliest (latest) start time of activity i as determined by the standard forward (backward) recursion procedure
(Hartmann and Kolisch, 2000). The latest start time of every activity is defined as the latest time at which
the activity could start without delaying any of its successors earliest start time. These measures are given
in Table 1.

RM1 is the sum of free slacks over all the project activities. It corresponds to the measure adopted by Al
Fawzan and Haouari (2005). This measure gives the same weight to all activities with no regard to their num-
ber of successors or their resource requirements. However, an increase in the duration of an activity having a
large number of successors is more likely to affect the project makespan than an increase in the duration of a
job with very few successors. Therefore, in the proposed measure RM2, the free slacks of all activities are
weighed by the numbers of their respective successors before being summed up. Similarly, when a duration
increase occurs, the resources required by the affected activity will be seized and made unavailable for a longer
period. The more the delayed activity requires resources the more the project makespan is likely to increase
because of unplanned resource unavailability. This is expressed by the RM3 measure in which the free slacks
of all activities are weighed by their respective aggregate resource requirements before being summed up. Mea-
sure RM4 combines the RM2 and RM3 measures. It simultaneously accounts for the successor number and
resource requirement weights.

In addition, measures RM1 to RM4 could be biased by very large si values. In fact, these measures will be
increased in a disproportionate manner compared to the real ability of the schedule to cope with small dura-
tion increases. In other words, just a small free slack is sufficient to absorb a small duration increase. Summing
up large free slacks in the robustness measures may wrongfully inflate them. Consequently, eight other mea-
sures are proposed. First, measures RM5 to RM8 are the equivalent of measures RM1 to RM4 with the free
slack si being replaced by a binary variable ai. This variable is set to unity if the activity free slack exists
and nullified otherwise. Hence, this group of measures consider only the possible existence of a slack and
grants no importance to its actual length. Second, measures RM9 to RM12 are the equivalent of measures
RM1 to RM4 with the free slack si being replaced by the minimum among si and a fraction frac of the activity
duration pi. This fraction equals the average percentage increase in activity duration. Hence, if the free slack is
small, it is included as it is; if it is very large, only its potentially useful part is considered by this last group of
measures.
3. Two-stage robust schedule generation approach

3.1. General description

The two_stage robust schedule generation approach is based on the so-called biased-sampling-multi-pass

method featuring an enhanced version of the serial schedule generation schemes (SGS) coupled with the use
of priority rules (Hartmann and Kolisch, 2000). The robust schedule is determined following a two phase
methodology:
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• Phase I: The heuristic is run a large number of times with the sole objective of minimizing the project dura-
tion Cmax. The smallest value generated thus far is taken as a threshold value for the next phase.

• Phase II: The heuristic is re-run a large number of times with the objective of maximizing the RM while
keeping the Cmax at a level equal to or smaller than the threshold value.

Since the objectives pursued in both phases are different, the best performing priority rule in phase I will not
necessarily be the most appropriate one in phase II. Therefore, it is not viable to combine the two phases in a
unique phase in which the robustness objective would be targeted while the Cmax threshold would continu-
ously be updated.
3.2. Phase I description

In this method, a large number of iterations, each resulting in a different schedule, is executed. The current
best schedule generated is retained. Thus, each iteration consists of three main steps. In the first step, the activ-
ity priority values, issued from the selected priority rule (PR), are used to obtain the selection probabilities.
The second step is a random-biased selection of eligible activities according to their selection probabilities.
In the third step, selected activities are scheduled to their precedence and resource feasible earliest start times
(Kolisch & Hartmann, 1999). A total of 16 PRs reported from the RCPSP literature are used in this study and
are listed in Table 2 (Hartmann & Kolisch, 2000; Yang, 1998).

Moreover, two important additional features are incorporated in order to enhance the performance of the
heuristic.
3.2.1. Random partial destruction and reconstruction of the incumbent solution

The incumbent solution is partially destroyed and then reconstructed, in the sense that, a random number
of its last selected activities are discarded before being rescheduled again. Hence, to generate a new schedule
on the basis of the incumbent solution, a random number of the first activities of the latter are considered as
already scheduled and then, the RCPSP is solved for the still unscheduled activities using the same serial SGS.
The reader should notice that this procedure is different from the so-called ‘‘lower bound destructive improve-
ment’’ proposed by Klein and Scholl (1999).
3.2.2. Solution of the symmetric problem

For each activity, successors become predecessors and vice versa. In fact, it is of common knowledge that
the regular scheduling problem and its symmetric counterpart share the same optimal solution (Cavalcante
Table 2
Priority rules used for activity selection

Abbreviation Priority rule

MaxDur Maximum duration
MinDur Minimum duration
MaxRR Maximum resource requirement
MinRR Minimum resource requirement
MaxSuc Maximum number of direct successors
MinSuc Minimum number of direct successors
LST Latest starting time
LFT Latest finishing time
MinSlk Minimum activity free slack
MaxSlk Maximum activity free slack
MaxRPW Maximum rank positional weight
MinRPW Minimum rank positional weight
MaxCRR Maximum cumulated resource requirement
MinCRR Minimum cumulated resource requirement
MaxCSuc Maximum cumulated number of successors
MinCSuc Minimum cumulated number of successors
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et al., 2000; Khemekhem and Chtourou, 2006; Möhring et al., 2003). Hence, trying to solve the symmetric
problem is intended to enlarge the search domain for the best solution. Moreover, the incumbent solution
of the symmetric problem was partially destroyed and reconstructed. Therefore, the total number of iterations
(ITER) of the first phase was split on four quarters as described in Box 1, where r is the iteration counter and C
is the makespan of the just obtained solution
Box 1 Phase I general scheme
• Initialization
– C1 = LargeNumber

– Cs
1 ¼ LargeNumber

• For r = 1 to 0.25 * ITER

– Solve the regular problem with a forward recursion pass
– If (C < C1) update the best solution yet S1 (C1 = C)

• For r = (0.25 * ITER + 1) to 0.50 * ITER

– Partially and randomly destruct schedule S1

– Reconstruct schedule S1

– If (C < C1) update the best solution yet S1 (C1 = C)

• For r = (0.50 * ITER + 1) to 0.75 * ITER

– Solve the symmetric problem for minimum Cmax

– If ðC < Cs
1Þ update the best solution yet Ss

1ðCs
1 ¼ CÞ

• For r = (0.75 * ITER + 1) to ITER

– Partially and randomly destruct schedule Ss
1

– Reconstruct schedule Ss
1

– If ðC < Cs
1Þ update the best solution yet Ss

1ðCs
1 ¼ CÞ

• If ðC1 6 Cs
1Þ

S1 is the best schedule and C1 is the threshold makespan value
Else

Ss
1 is the best schedule and Cs

1 is the threshold makespan value
These enhancements have shown significant improvement of the solution and the additional computational
burden they caused is negligible (computational requirements are provided in Section 4). Hence, for the best
found PR, we observed that the mean deviation (MD) with regard to the optimal solution was 25% lesser than
the solution obtained with the classical algorithm with the same number of iterations (5000). Table 3 presents
the performance of the first phase of the algorithm with the three best PRs among the sixteen investigated with
ITER = 5000. It is worth noting that in sets J60 and J90 (Kolisch et al., 1998, chap. 9), the performance of the
schedule generation heuristic is assessed using the MD with regard to the upper bound (best known solution)
and also, with regard to the critical path-based lower bound (Kolisch and Hartmann, 2006). In fact, for these
two standard sets, the large problem instance size does not permit solving for the optimal solution through
exact methods.



Table 3
Performance of the schedule generation heuristic

Rule J30 J60 J90

Deviation/opt. sol. (%) Deviation/ub. sol. (%) Deviation/lb. sol. (%) Deviation/ub. sol. (%) Deviation/lb. sol. (%)

Av. Sd. Av. Sd. Av. Sd. Av. Sd. Av. Sd.

MaxRPW 0.45 1.15 1.71 3.10 3.72 6.81 2.47 4.36 4.57 8.28
MaxCRR 0.51 1.24 2.01 3.40 4.04 7.08 2.67 3.45 4.76 8.24
MaxCSuc 0.58 1.32 1.98 3.46 4.02 7.15 2.62 4.33 4.71 8.15

Av., average of the 480 deviation values; Sd., standard deviation of the 480 deviation values; Opt. sol., optimal solution; ub. sol., upper
bound solution; lb. sol., lower bound solution.
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The obtained results generally compare well to the results of similar biased random sampling approaches
especially for the small sized problems (Kolisch and Hartmann, 1999, 2006). In particular, the MaxRPW rule
proved to be the best performing rule for both minimizing makespan and also for finding the largest number
of optimal solutions over the 480 instance problems of each set. This rule attributes to each activity the value
of its own duration plus those of all its direct and indirect successors. Hence, MaxRPW is considered as the
reference PR for phase I. In other words, it will be the only rule used in phase I of the approach in all the
upcoming applications of this work.

3.3. Phase II description

Phase II of the proposed approach is intended to find the most robust schedule with a makespan not
larger than the threshold value found in phase I. The same number of iterations as in phase I are exe-
cuted. Each iteration starts by the execution of a forward recursion using one particular PR among
the 16 investigated. This allows one to determine the project makespan as well as every activity i earliest
completion time ECi (i = 1, . . . ,n). A backward recursion pass is then carried out in order to obtain for
each activity i, its latest completion time LCi and consequently, its free slack si = LCi –ECi

(i = 1 . . . ,n). This step is performed only in case the makespan is not larger than the phase I threshold
value. Finally, the algorithm can compute a RM selected among those of Table 2. This measure is used
for the selection of the most robust schedule respecting the makespan constraint issued from phase I. The
general scheme of phase II is depicted in Box 2.
Box 2 Phase II general scheme
• Initialization
–Threshold makespan value (phase I, MaxRPW) Cr

1 ¼ minðC1;C
s
1Þ

–RMmax = 0

• For r = 1 to ITER

–Execute forward recursion to determine a schedule S with a makespan C;
–If ðC 6 Cr

1Þ
* Find robustness measure RM by a backward recursion procedure;

* If ðC < Cr
1 OR RM > RMmax)

ÆUpdate best schedule of phase II: S2 = S;
ÆUpdate best schedule RM: RMmax = RM;
ÆUpdate best schedule makespan: C2 = C;
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4. A simulation study

4.1. Scope

The simulation study presented in this section is intended to demonstrate the benefits of considering not
only deterministic makespan but also schedule robustness for projects facing possible disruptions of their
activity durations. Thus, two series of simulations are performed:

• Series 1: 10 problem instances from the benchmark problem set J30 (Kolisch et al., 1998, chap. 9)
• Series 2: 10 problem instances from the benchmark problem set J60 (Kolisch et al., 1998, chap. 9)

For each series, the goal was to determine if the robust schedules perform better than the minimum-make-
span-non-robust schedules, when a random activity duration disruption scheme is applied to each project. In
this work, a schedule Sa with a corresponding makespan Ca is said to outperform a schedule Sb with a cor-
responding makespan Cb whenever we have Ca < Cb. In addition, since the disruption scheme is stochastic,
a large number of iterations is to be performed for each problem instance in order to guarantee statistical via-
bility. Furthermore, many PRs could be used to generate schedules and many RMs are available to estimate
their robustness. Therefore, the study also aims at assessing the performances of the various PRs and RMs in
terms of generating schedules that are sufficiently robust to cope with small disruptions.

4.2. Description of the simulation procedure

In order to better illustrate the effects of the robustness on the final performance of the schedules, the
simulation runs are planned for the comparison of schedules with the same makespans but with very
different RMs. Therefore, for every problem instance of each series, two schedules are obtained: a
‘‘non-robust’’ schedule S1 with a makespan C1 issued from phase I and a ‘‘robust’’ schedule S2 with
a makespan C2 (C2 6 C1) issued from phase II. However, as described in Section 3.2, phase I classically
solves the RCPSP for makespan minimization with no regard to robustness. Therefore, it was necessary
to slightly adjust this first phase in order to obtain the ‘‘non-robust’’ schedule S1. This is done in the
following manner. First, every forward recursion pass of phase I is followed by a backward recursion
pass. This permits one to obtain the free slacks required for calculating RM. Second, the test for updat-
ing the incumbent solution is now twofold. If a schedule with a better makespan (C < C1) is found, it is
automatically saved and its RM is assigned to the variable holding the minimum robustness value
RMmin. If a schedule with the already attained makespan is found, it is saved only if its RM is worst
than RMmin (C = C1 AND RM < RMmin). Both C1 and RMmin are updated whenever a new solution is
saved. Without this adjustment, schedule S1 would have an arbitrary value of RM and the comparison
with S2 may be ambiguous.

For each of the NProb problem instances, the two previously obtained schedules are first retrieved. A
number ITER of iterations, each comprising three main steps, are then run. In the first step, the durations
of randomly picked c% of the project activities are increased by g% of their original values. Subsequently,
the new post-disruption makespans of schedules S1 and S2 are computed in the second step. This is done
by executing an activity-list-based serial SGS on S1 then on S2, respectively (Kolisch and Hartmann,
1999). This procedure differs from the already used PR-based serial SGS in the fact that two important
steps are no longer required. These are: finding the eligible activity set and selecting one activity among
this set. In fact, an activity list is, by definition, a precedence feasible one. The list used in this task is
simply the list of activities following their selection order when scheduled in the first time. This guarantees
obtaining the post-disruption Cmax of the same schedule. In fact, the order of the activities in the schedule
will remain the same since the random selection step is removed. Finally, the third and final step consists
in updating the proportions P1 (P2), each time schedule S1(S2) outperforms schedule S2(S1). The propor-
tion difference (P = P2 � P1) is considered as the most revealing performance measure since it shows the
net advantage of the robust schedule over the non-robust one. The simulation procedure general scheme is
summarized in Box 3.
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Box 3 General simulation scheme
• Initialization of performance measures
j P1 = 0 (P1: Proportion of iterations where S1 outperforms S2);
j P2 = 0 (P2: Proportion of iterations where S2 outperforms S1);

• For prob = 1 to Nprob

j Schedule retrieving

y

Retrieve the ‘‘non-robust’’ schedule S1 with a makespan C1 obtained from
phase I;

y

Retrieve the ‘‘robust’’ schedule S2 with a makespan C2 obtained from phase
II;

j For r = 1 to ITER

y

Activity duration alteration
– Randomly pick a percentage a% of activities to have their duration

altered;
– Increase the duration of the picked activities by b% of their original

values;

y

Simulation of the execution of schedules S1 and S2 with altered durations

– Execute an activity list forward recursion on S1to obtain new makespan
C01;

– Execute a forward recursion pass with activity list S2 to obtain new make-
span C02;

y

Updating proportions

– If ðC01 < C02Þ

P1 = P1 + 1/(ITER * Nprob);

– If ðC02 < C01Þ

P2 = P2 + 1/(ITER * Nprob);

• P = P2 � P1
4.3. Results

For each of the two simulation series, the 16 PRs were investigated together with the 12 RMs in a full fac-
torial design. In addition, the number of runs has an influence on the quality of the solution random biased
sampling methods (Kolisch and Hartmann, 2006). The iteration numbers reported in the literature vary
between 1000 and 50,000. In this study, each of the two phases of the robust schedule generation algorithm
was carried out 20,000 times for each instance. It is worth mentioning here that, since many solutions may
share the same makespan and the same RM, the re-execution of phases I and II on an instance problem does
not necessarily generate the same schedule. Besides, the activity duration alteration scheme was as follows:
c = 20% of activities to have their duration increased by g = 10% of their original values. Also, 1000 iterations
per run were sufficient to achieve results repeatability in the simulation phase. Hence, for each couple (RM,
PR), the sample sizes necessary to compute the standard deviations of proportions P1 and P2 are, respectively:
N1 = N2 = ITER * NProb = 1000 * 10 = 10,000.

In order to demonstrate that the proposed approach provides a significantly higher proportion of
best performing schedules we test the one sided following hypotheses with a significance threshold of
0.001



Table 4
Advantage of using of robust schedules (problems from J30)

RM PR P2 rP2 P1 rP1 P rP2�P1 z

RM7 MinRR 0.56 0.0050 0.09 0.0029 0.47 0.0066 70.956
MaxSlk 0.52 0.0050 0.08 0.0027 0.44 0.0065 67.893
MinCRR 0.51 0.0050 0.09 0.0029 0.42 0.0065 64.807
MaxCSuc 0.52 0.0050 0.13 0.0034 0.39 0.0066 58.878

RM1 MinRR 0.40 0.0049 0.14 0.0035 0.26 0.0063 41.411
MaxSlk 0.52 0.0050 0.10 0.0030 0.42 0.0065 64.214
MinCRR 0.54 0.0050 0.07 0.0026 0.47 0.0065 72.184
MaxCSuc 0.55 0.0050 0.06 0.0024 0.49 0.0065 75.256

P2: Proportion of iterations in which schedule S2 outperforms schedule S1 (over a 10,000 iterations sample).
rP2: Standard deviation corresponding to P2.
P1: Proportion of iterations in which schedule S1 outperforms schedule S2 (over a 10,000 iterations sample).
rP1: Standard deviation corresponding to P1.
P: Net advantage of S2 over S1 (P = P2 � P1).
rP2�P1: Standard deviation of the proportion difference.
z: Standard normal decision variable.
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• H0: P2 is not larger than P1

• H1: P2 is larger than P1

This is done by comparing the standard normal decision variable z ¼ ðP 2 � P 1Þ=rP2�P1 to the critical min-

imal value zcr = 3.08 where, rP2�P1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p � ð1� pÞ � ð1=N 1 þ 1=N 2Þ

p
and p = (N1 Æ P1 + N2 Æ P2)/(N1 + N2)

(Tabachnik & Fidell, 1989). For simulation series 1 and with all the (RM, PR) couples, the results clearly con-
firm that the one sided null hypothesis is rejected since the smallest P value was 0.12, associated with z = 19.6
much higher than the critical value zcr. This result corresponds to P2 = 0.33, P1 = 0.19 obtained for the couple
(RM1, MaxRPW). For all remaining (RM, PR) couples, the P and z values are larger, demonstrating a sig-
nificant superiority of ‘‘robust’’ schedules S2 over the ‘‘non-robust’’ ones S1. The average and the maximum
values of P were, respectively, 0.33 and 0.49. Table 4 depicts the results of the best performing PRs coupled
with the best RMs.

As for series 2, results showed that, on the opposite of the first series, robust scheduling of larger pro-
jects could be effectively performed through some (RM, PR) couples only. In fact some PRs (MinDur,
MaxSuc) exhibited negative values of P for all the RMs whereas some others (MaxDur, MaxRR, MinRR,
MinCRR, MaxCSuc) displayed both positive and negative values depending on the chosen RM. Hence,
the null hypothesis could not be disproved for all combinations. The remaining rules gave positive values
of P with all RMs. With these rules the minimum value of P was 0% whereas the average and the max-
imum values were, respectively, 18% and 36%. Table 5 depicts the results of the best performing rules cou-
pled with the best RMs. For all combinations of Table 5, the null hypothesis H0 is rejected with a
significance threshold of 0.001. It appears that the benefits of considering robustness are obvious, but less
significant than in the case of smaller size projects (series 1). Finally, the average CPU required for phase
I, phases I and II combined as well as for the simulation phase are given in Table 6. These times are
obtained using a personal computer with an Intel Core 2 processor, a clock speed of 2 · 1.6 GHz and
1 GB of RAM.
5. Conclusion

This paper addressed the development of a simple priority-rule-based two-stage approach to solve RCPSP
for minimum project duration then for maximum quality-robustness. It also proposed some efficient robust-
ness ‘‘predictive’’ indicators intended to assist the project managers in selecting the most robust schedule
among a set of schedules sharing the same makespan. Such a schedule is the more likely to be the best in facing
small disruptions. Finally, this work demonstrated, through extensive simulation runs on a set of randomly



Table 6
Average CPU time per instance (ms)

J30 J60

Average Sd. Average Sd.

Phase I 0.20 0.05 0.66 0.22
Phase I + phase II 0.39 0.33 1.24 0.11
Simulation (with 12 RMs) 0.77 0.13 2.19 0.36

Table 5
Advantage of using robust schedules (problems from J60)

RM PR P2 r2 P1 r1 P rP1�P2 z

RM1 MinSucc 0.33 0.0047 0.13 0.0034 0.20 0.0060 33.605
LFT 0.39 0.0049 0.10 0.0030 0.29 0.0061 47.679
MinRPW 0.35 0.0048 0.12 0.0032 0.23 0.0060 38.357

RM2 MinSucc 0.33 0.0047 0.14 0.0035 0.19 0.0060 31.686
LFT 0.41 0.0049 0.09 0.0029 0.32 0.0061 52.256
MinRPW 0.35 0.0048 0.13 0.0034 0.22 0.0060 36.425

RM5 MinSucc 0.35 0.0048 0.10 0.0030 0.25 0.0059 42.333
LFT 0.38 0.0049 0.09 0.0029 0.29 0.0060 48.364
MinRPW 0.39 0.0049 0.11 0.0031 0.28 0.0061 45.724

RM7 MinSucc 0.32 0.0047 0.08 0.0027 0.24 0.0057 42.426
LFT 0.42 0.0049 0.06 0.0024 0.36 0.0060 59.604
MinRPW 0.37 0.0048 0.13 0.0034 0.24 0.0061 39.192

P2: Proportion of iterations in which schedule S2 outperforms schedule S1 (over a 10,000 iterations sample).
rP2: Standard deviation corresponding to P2.
P1: Proportion of iterations in which schedule S1 outperforms schedule S2 (over a 10,000 iterations sample).
rP1: Standard deviation corresponding to P1.
P: Net advantage of S2 over S1 (P = P2 � P1).
rP2�P1: Standard deviation of the proportion difference.
z: Standard normal decision variable.
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benchmark problems, the benefits of picking a robust schedule over a non-robust one having the same make-
span. As for 10 problems from the standard set J30, both robust and non-robust schedules were executed with
a 10% duration increase applied to the same randomly picked 20% of the project activities. Over 1000 itera-
tions per instance problem, the robust schedules displayed a shorter makespan in 55% of the times whereas the
non-robust schedules were the best performing ones in only 6% of the times.

As directions for future work, it is proposed to explore other performance measures for assessing the ben-
efits of considering robustness. This is actually in progress. It would also be interesting to search for better
performing PRs and RMs. In addition, it is planned to explore some typical disruption schemes characterizing
particular application fields. Finally, the approach could be extended for disruptions caused by resource
unavailability.
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