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Abstract This paper focuses on studying and adapting
modeling techniques using the finite element method to
simulate the rigid die compaction of metal powders. First, it
presents the implementation of the cap constitutive model
into ABAQUS FE software using the closest point
projection algorithm. Then, an inverse modeling procedure
was proposed to alleviate the problems raised by the
interpretation of the experimental tests and to more
accurately determine the material parameters. The objective
function is formed, based on the discrepancy in density data
between the numerical model prediction and the experi-
ment. Minimization of the objective function with respect
to the material parameters was performed using an in-house
optimization software shell built on a modified Levenberg–
Marquardt method. Thus, an integrated simulation module
consisting of an inverse optimization method and a finite
element method was developed for modeling the powder
compaction process as a whole. The simulation and
identification module developed was applied to simulate
the compaction of some industrial parts. The results reveal
that the maximum absolute error between densities is 2.3%.
It corresponds to the precision of the experimental method.

Keywords Powder metallurgy . Compaction process . Finite
element . Density . Inverse identification . Cap model .

Abaqus .Material parameters . Iron powder

Nomenclature
1 Second order identity tensor
C Fourth-order elasticity tensor
cj Constraint functions
E(ρ) Young’s modulus as a function of compact

density
Fs Function Fs I1ð Þ ¼ a þ qI1 � g exp �bI1ð Þ

in the shear failure surface equation

Fc Function Fc I1; sk k; kð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sk k2 � I1�L kð Þ½ �2

R2

q
in the cap surface equation

f1 Yield function of the tension surface
f2 Yield function of the shear surface
f3 Yield function of the cap surface
G Shear modulus
g First order derivatives of the weighted

penalty functions with respect to the
parameters

h Second order derivatives of the weighted
penalty functions with respect to the
parameters

Hep Elastoplastic tangent moduli
I Fourth-order identity tensor
I1 First invariant of stress tensor
J2 Second invariant of deviatoric stress tensor
J Jacobian matrix of Φ
K(ρ) Bulkmodulus as a function of compact density
[K] Stiffness matrix
m Number of measured data
n Number of parameters to be optimized
q Number of constraints
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R Aspect ratio of the cap surface
R Unbalanced load vector
r Residual vector
r1,r2,r3 Material parameters describing the aspect

ratio of the cap surface R ¼ r1 r� r2ð Þr3
s Deviatoric stress tensor
sk k ¼ ffiffiffiffiffiffiffiffi

s : s
p

Norm of the deviatoric stress tensor
t Time t
T Material parameter (tension cutoff)
u Nodal displacement vector
W,D Material parameters for hardening rule "pv ¼

W 1� e�D�X kð Þ� �
Greek symbols
α,β,γ,θ Material parameters for the shear failure Fs I1ð Þ ¼

a � g e �bI1ð Þ þ qI1
ε Logarithmic strain
ρ Relative density
ρ0 Initial loose state relative density
τ Kirchhoff stress
σ Cauchy stress tensor
z Weighted penalty function
x Tolerance for convergence (specified positive

number)
w Non-negative weight
δpk Parameter correction
= Helmholtz’ free energy function
Φ Cost function
Φ* Objective function
κ Hardening parameter
li Plastic consistency parameters
μ Levenberg-Marquardt parameter
Δ(∙) Increment of a quantity
@ �ð Þ Partial derivative of a quantity

Subscripts
0 index for initial value
1, 2, 3 indices for tension, shear and cap failure surfaces

respectively
c cap surface
g geometric
l linearization
j index for the number of constraints j=1,q
m material
n, n+1 indices for successive configurations
s shear failure surface
v volumetric

Superscripts
cal calculated using finite element
e elastic
exp experimental
k iteration
p plastic

T tangent
Trial trial or elastic prediction

1 Introduction

Powder metallurgy (P/M) has become widely recognized
as a robust process for producing high-quality parts for a
variety of important applications. This success is due to
the advantages the process offers over other metal
forming technologies such as forging and metal casting;
advantages in material utilization, shape complexity,
near-net shape dimensional control, among others [1].
The P/M process can be broken down into three main
manufacturing steps: mixing of the powder, compaction,
and sintering. More than any other operation, it is the
compaction, which is generally performed using a set of
punches and dies, mounted onto a hydraulic or mechanical
press that controls the practical application of powder
metallurgy. The semi-finished product resulting from the
compaction operation is a compact having a nearly final
form but a very weak mechanical resistance sufficient only
to ensure its transfer to the next step in the process:
sintering.

The modeling of the compaction operation is used to
optimize not only this step, but ulterior steps as well. In
recent years, several types of constitutive models have been
developed and applied in the analysis of the compaction of
metal powders. Most of the proposed constitutive models
belong to one of the following two classes: porous material
models and granular material models. Porous material
models are based on the classical von Mises model in
which some modifications are introduced in order to
account for the influence of the hydrostatic pressures on
the yield criterion [2–4]. Since these models are a simple
extension of classic elastoplasticity, they are consequently
suitable to model the behavior of powders in high-density
zones but unfortunately cannot be used to model the first
stages of compression [5]. Also, this type of model would
require a plasticity limit that is equivalent during compres-
sion and tension, which is not adequate for granular
mediums. Granular material models, originally developed
for rocks, soils, and other geological materials, are based on
a multiple yield criterion approach and are naturally
sensitive to hydrostatic stress and consider the cohesion
and friction among the particles of granular matter. As a
result of the suggestion that the low strength of powder
compacts in shear and tensile stress field must be taken into
account, models, such as the Drucker–Prager cap model
[6], the Cam–Clay model [7], or the DiMaggio–Sandler
model [8, 9] have been adapted from soil mechanics
literature. These models are characterized by a yield
criterion, a hardening function and a flow rule and they
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differ by the functional form of the yield surface. In the
Drucker–Prager cap model, the yield surface consists of an
elliptical cap and a straight failure line. In the Cam–Clay
model, both the failure surface and the cap are characterized
by elliptic arcs with different eccentricity. In the DiMaggio–
Sandler model the failure surface is given by an exponential
function approaching the yield stress of the fully dense
material at high pressures.

Because it captures important aspects of the physics of
compaction, the DiMaggio–Sandler Cap model, on which the
present work is based, is a frequently used continuum model
for modeling the mechanical behavior of pharmaceutical
powders during compaction [10–15] as well as in the
simulation of metal powder compaction processes [16–20].
Indeed, this model reflects the yielding, frictional, and
densification characteristics of powder along with strain
and geometrical hardening which occur during the compac-
tion process. However, the counterpart of this flexibility is
the significant amount of experimental work required to
properly calibrate the model parameters for a particular blend
of powders [21–24]. Moreover, in these studies, the elastic
moduli, as well as the cap aspect ratio, were assumed to be
constant which was not suitable to describe the observed
nonlinear unloading behavior of metal powders and to better
represent ductile powder compaction behavior, respectively.

In this work, an enhanced Cap model for simulating the
behavior of powders during rigid die compaction has been
developed. This model allows for using variable elasticity
as well as a density dependent cap aspect ratio. It was
implemented into the finite element (FE) code ABAQUS as
a user defined subroutine using a return mapping algorithm.
The simulations were run by means of an integrated
computer module that uses I-DEAS Master Series software
for the geometrical definition of the problem, an in-house
developed interface program for the determination of
boundary conditions, ABAQUS software for the FE
solution, and ABAQUS POST for the post-processing of
the results. In addition, the sizeable amount of cap model
parameters and experimental efforts required that these
parameters to be determined, constitute a handicap for this
family of models. From this, comes the necessity to create
an alternate calibration procedure for the model, based on
inverse problems, in order to determine the material
parameters directly from production components. Thus,
this work creates a complete module capable of using finite
elements and inverse optimization to evaluate the density
distribution resulting from the compaction process.

2 Cap plasticity model

To formulate the elastic-plastic constitutive equations in a
large deformation framework, one should first choose an

appropriate work conjugate pair of stress and strain
measurements [25, 26]. The logarithmic strains ε were
chosen because they are the only measures that permit an
additive decomposition of the strain in the large deforma-
tion range into elastic (εe) and plastic (εp) deformation
tensors [25–27].

" ¼ "e þ "p ð1Þ
For the chosen strain measure, the conjugate stress

measure is the Kirchhoff stress τ which can be approxi-
mated to the true Cauchy stress tensor σ in the case where
elastic deformations are small compared to unity. The
adopted stress–strain relationship corresponds to that of an
isotropic hyperelastic solid where the elasticity parameters
are density dependent:

s ¼ C"e ¼ C "� "pð Þ ð2Þ
with

C¼ @2y
@"2

¼ 2G rð ÞIþ K rð Þ � 2 3= G rð Þð Þ1� 1 ð3Þ

and where y is Helmholtz’ free energy function, C is the
fourth-order elasticity tensor, I and 1 are the fourth and
second order identity tensors respectively, G and K are the
shear and bulk moduli expressed as a function of the
powder’s relative density ρ.

Another main component of the constitutive model is the
yield functions that separate the purely elastic behavior
from the elastic plastic one. The yield surface of this elasto-
plastic model has a moving cap, intersecting the hydrostatic
loading line, whose position is a function of plastic
volumetric strain, as shown in Fig. 1. The main features
of the cap model include a failure surface and an elliptical
yield cap which closes the open space between the failure
surface and the hydrostatic axis. The yield cap expands in
the stress space according to a specified hardening rule. The
functional forms for these surfaces are

f1 ¼ I1 � T ¼ 0 ð4Þ

=022f2

=0f1

=0f3

X(κ)L(κ)T

Elastic domain

Cap surface

Shear failure 
surface

Tension failure 
surface

Fig. 1 Multi-surfaced Cap elastoplasticity model
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f2 ¼ sk k � Fs I1ð Þ ¼ 0 where Fs I1ð Þ ¼ a þ q I1 � g e�bI1

ð5Þ

f3 ¼ Fc I1; sk k; kð Þ � Fs kð Þ ¼ 0

where Fc I1; sk k; kð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sk k2 � I1�L kð Þ½ �2

R2

q ð6Þ

where I1 is the first stress invariant, sk k ¼ ffiffiffiffiffiffiffiffi
s : s

p ¼ ffiffiffiffiffiffiffi
2J2

p
is

the norm of the deviatoric stress tensor, κ is the hardening
parameter, α, β, γ, θ, R and T are material parameters, and

L kð Þ ¼ k if k> 0
0 if k � 0

�
ð7Þ

X kð Þ ¼ k þ R � Fs kð Þ ð8Þ

The tension and shear failure surfaces, f1 and f2,
respectively, represent the stress states that may cause
fracture of the powder compact during its ejection or its
compaction with very large local distortion. This is often
caused by the different compaction ratios of powder
columns in multilevel parts. The cap yield surface f3 is an
elliptical function, with R denoting the ratio of two elliptical
cap’s diameters. Traditionally, R was considered to be
constant, which may be appropriate for non-cohesive and
non-ductile materials such as geological materials. Howev-
er, it is not realistic to model metal powder behavior using a
cap having a constant axes ratio R. In this work, R has been
implemented as an increasing function of the density. This
allows for the proper modeling of the behavior similar to
that of soils in the low pressure zone. But, when the
pressures become important and the density becomes
elevated, the plastic yielding becomes more susceptible to
occur by a shear load than by a hydrostatic load. A flattened
cap would be more representative of the compacted powder
behavior at high densities.

For strain hardening in the compressive regime, an
exponential function for the effective volumetric plastic
strain "pv is used to govern the expansive and contractive
behavior of the elliptical cap through the evolution of the
state variable k. This evolution is given by the hardening
rule relating k to the effective volumetric plastic strain "pv in
a form suggested by the results of the classical hydrostatic
pressing test

"pv X kð Þð Þ ¼ W 1� e�D�X kð Þ
h i

ð9Þ

where, W and D are two material parameters and "pv is the
effective plastic strain expressed in terms of the stress first

invariant X(k) and defined in a manner that prevents the cap
strain from softening:

"pv ¼
"pv if"

�p
v > 0 or if k > 0 and k > I1

0 otherwise

(
ð10Þ

The volumetric plastic strain "pv is the trace of the plastic
strain tensor εp. It is used to update the actual aggregate
density ρ using the initial loose state density ρ0 as follows:

r ¼ r0 e
�"

p
v ð11Þ

3 Computational algorithm of cap model

3.1 Finite element problem

The compaction process is assumed to be a quasi-static
transformation with the final spatial distribution of density
ρ(x) as the driving unknown [28, 29]. Every material point
undergoes finite strain deformation and elastoplastic trans-
formations take place under the interaction of the powder
medium and the tooling components. The corresponding
nonlinear structural FE analysis involves integration of the
differential elastoplastic equations in time and space. The
time integration in the present context is due to the
discretization of the loading history, while the spatial
integration is normally performed via Gauss quadratures
at the FE level and then assembled in terms of the
mechanical degrees of freedom.

A nonlinear solver based on the Newton–Raphson
method has been used. This choice is motivated by the
presence of strong nonlinearities and the desired quadratic
rate of convergence. The scheme used thus required the
updating of the consistent tangent stiffness at each iteration
and the use of the algorithmic tangent material operator
[30]. Hence, at the end of each time step, the current stress
state satisfies the equilibrium of the mechanical system with
the external forces in a weak sense and complies with the
full consistency of the elastoplastic material and frictional
contact formulation.

In this nonlinear context where the principal unknown is
the incremental nodal displacements vector Δunþ1f g
between configurations n and n+1, the discrete linearized
FE approximation to be solved at each iteration k can be
written as follows:

KT
� � k

Δuf gk

¼ KT
m

� �þ KT
g

h i
þ KT

l

� �� 	k�1
Δunþ1f gk

¼ ΔRnþ1f gk ð12Þ
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where KT
m

� �
is the material stiffness matrix, KT

g

h i
is the

geometric stiffness matrix, KT
l

� �
is the contribution result-

ing from the linearization of contact forces and ΔRnþ1f g is
the incremental unbalanced load vector. This equation is
solved using a Newton–Raphson scheme following the
algorithm summarized in Table 1.

3.2 Integration of the behavior law

The numerical integration procedure of the behavior model
was completed according to the closest point projection
algorithm. Calculation of the stresses is performed follow-
ing an implicit scheme of prediction–correction and by
using an operator split method [31]. First, the plastic
evolution is assumed to be momentarily frozen and an
elastic prediction is performed. If the plasticity criterion is
violated by the prediction, then a plastic correction must be
performed to take the yield that occurs into account. This
algorithm is coded in Fortran 77 and implemented into the
ABAQUS software using the User Material option UMAT.
At each iteration, performed for a single load step
corresponding to the passing of an equilibrium configura-
tion Cn to following configuration Cn+1, the ABAQUS
software calls upon the UMAT subroutine to perform an
integration of the behavior law. This access to the

subroutine is done for each of the numerical integration
point elements. The schematic is based on the algorithms
proposed by Simo et al. [32] for implementation of the Cap
model. Since this is a multi-surface elastoplasticity model,
there should be an intermediate algorithmic step between
the elastic prediction and the plastic correction: that of the
active plasticity mode detection.

The numerical integration of the behavior law is based
on the integration of the flow rule according to an implicit
Euler scheme, with time increment Δt between the instants
tn and tn+1:

Δep ¼
X3
i¼1

Δli
@fi s; hð Þ

@s
ð13Þ

where, Δli represents the plastic consistency parameter
increment and ΔεP designates the tensor of the plastic
strain increment. This tensor is expressed as a function of
the plastic deviatoric strain increment Δep and the plastic
volumetric strain increment tensor Δepv:

Δep ¼ Δep þ 1
3Δ"pv � 1 ð14Þ

In a similar fashion, the total strain increment tensor Δε
is expressed as a function of the deviatoric strain increment
and the volumetric strain increment. The same applies to
the stress tensor σ that can be broken onto a deviatoric part
s and a spherical part I1:

Δ" ¼ Δeþ 1
3Δ"v � 1 ð15Þ

s ¼ sþ 1
3I1 � 1 ð16Þ

Furthermore, the tensor chosen to define the total strain
increment Δε can validly be decomposed additively into an
elastic and a plastic part:

Δe ¼ Δee þΔep ð17Þ

3.2.1 Elastic prediction

From a physical point of view, the elastic prediction
consists of freezing the plastic yield and applying an elastic
increment. This is basically to consider that, at instant tn+1,
the plastic strain is fixed and equal to the value at instant tn.
The stress obtained following this assumption, designated
as the elastic predictor or the trial stress, is given by:

sTrial
nþ1 ¼ C : "nþ1 � "pn

� � ¼ C : "en þΔ"nþ1

� �
¼ sn þ C : Δ"nþ1 ð18Þ

Table 1 Algorithm for the finite element solver

Step
1

Set the iteration counter k to 0

Initialize the global Jacobian KT
� � 0

and the nodal

displacement vector unþ1f g0 to their values at the
configuration n

Calculate the residual vector ΔRnþ1f g0
Step
2

Set k=k+1

Solve for Δunþ1f gk the linearized problem:
KT
� �k�1

Δunþ1f gk ¼ ΔRnþ1f gk
Update the solution: unþ1f gk ¼ unþ1f gk�1 þ Δunþ1f gk

Step
3

Check for convergence on both the displacement and
the residual

°If convergence, then set n=n+1 and go to next load
increment

°If no convergence, then:

*For each element:

*For each material integration point

Compute the strain increment

Retrieve the material point variables sn;kn and rn
Perform constitutive model integration using the closest
point projection algorithm by calling the UMAT subroutine
and obtain the values of snþ1;knþ1 and rnþ1 in addition
to the elastoplastic tangent moduli Hep

nþ1 ¼ @Δs
@Δ"

Store all the material point variables

Compute and assemble the residual vector and the material
stiffness matrix

Go back to step 2 for another equilibrium iteration
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Using the stress tensor decoupling principle (Eq. 16), the
spherical and deviatoric components of the stress tensor are
then obtained from the following equation:

ITrial1;nþ1 ¼ I1;n þ 3K �Δ"v;nþ1

sTrialnþ1 ¼ sn þ 2G �Δenþ1

ð19Þ

This last equation is used to predict if a plasticity state
has been reached. Indeed, the yield function f Triali;nþ1 test
values are obtained with this prediction. If all the test values
for the f Triali;nþ1 functions are negative, then the load state was
purely elastic. On the other hand, if some of the test
functions become positive, the real stress state will be
obtained after a plastic correction [33].

3.2.2 Plastic correction

The state of the material undergoing elastoplastic deforma-
tions is generally characterized by loading and unloading
conditions. Thus, the plastic loading or the elastic loading/
unloading is formulated according to the Kuhn-Tucker
relations that govern the evolution of the plastic consistency
parameters Δli;nþ1. These conditions, that must always be
verified, stipulate that at each instant there must be:

Δli;nþ1 � 0; fi;nþ1 � 0 and fi;nþ1 �Δli;nþ1 ¼ 0 ; i ¼ 1; 2; 3:

ð20Þ

This equation is used to characterize each of the Cap
model’s modes: elastic mode, tension mode, shear mode,
cap mode, singular tension mode at I1=T, and singular
compression mode at I1=� (Fig. 2).

Each mode will be identified in terms of limits to the
elastically predicted stresses. Then, the plastic consistency
parameters that allow calculation of the plastic strain are
determined. The stress conditions of each one of the plastic
modes is presented in Table 2, together with the corresponding
values of the plastic consistency parameters increments. These
values are then used to determine the plastic strain increment
(Eq. 13) and thus, the real stress state (Eq. 19).

3.2.3 Elastoplastic tangent moduli

The last step in the numerical integration of the constitutive
evolution equations is concerned with the determination of
the powder medium’s algorithmic material contribution to
the FE tangent stiffness matrix. This contribution is
computed at the integration point level and is called the
elastoplastic tangent moduli. In order to preserve a
quadratic rate of convergence for the global FE problem,
this moduli should be derived from the algorithmic and not
from the continuum mechanics formulation [33]. In fact,
this material tangent moduli corresponds to the stress
variation caused by an infinitesimal strain variation

Hep ¼ dsnþ1

d"nþ1
ð21Þ

It is therefore determined by a simple mathematical
derivation of the relation between the actualized stresses
and the strains:

dsnþ1 ¼ C : d"nþ1 � d"pnþ1

� � ð22Þ
This formulation requires the determination of the plastic

strain variation. The derivation of this module is performed
differently if the active mode presents perfect plasticity or
plasticity with hardening [33].

4 Inverse identification of the material parameters

Judicious use of the finite element simulation method rests
on the precision and exactness of the behavior model used.
To this end, it is not sufficient for the chosen model to be
well adapted to the type of behavior being modeled but
additionally, it is important to ensure that the model
parameters represent the behavior of the material in
question. Traditionally, the Cap model parameters are
determined from a rheological analysis of experimental
tests chosen for their suitability to the behavior being
studied: resonant frequency, hydraulic compression, hydro-
static compression, triaxial compression, simple uniaxial
compression, and special tests such as the Brazilian disk
test [33–36]. In the identification process, the interpretation
of the experimental trials usually requires the use of the
homogenous deformation hypothesis in order to thresh out
the results. However, the practical application of this
hypothesis is a very difficult task for mechanical tests that
are often not uniform and were aimed at characterizing the
material. Furthermore, if the use of the Cap model for
modeling the compression of ductile powders is fairly
limited, it is mostly due to the difficulty in its parametrical
and experimental characterization. Often, because of the
hypotheses required by the experimental characterization

-T L(K) X(K)

s

Tension Failure Mode
f1=0

Tension Corner 
Mode

Compressive Corner Mode

Cap Mode
f3=0 

Shear Failure Mode 
f2=0 

Elastic Mode

Fig. 2 Various elastoplastic modes within the Cap model
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approach, the parameter sets available do not reproduce real
practical situations. Thus, the identification of parameters
using the inverse method directly from industrial produc-
tion components represents an attractive alternative to the
classical procedure since it emanates from practical sit-
uations and avoids the hypothesis of homogenous defor-
mation altogether [37, 38].

4.1 Nonlinear optimization process

The optimization task is based on the Levenberg–Mar-
quardt algorithm [39, 40] in order to determine the
parameter corrections while the finite element solver
handles the solution of the direct problem. The principal
goal of this optimization process is to determine elasticity
(E, G), failure surface (a; b; g; q), hardening law (W, D),
and cap surface (r1, r2, r3) parameters for the plasticity Cap
model that are represented by the vector p=(E, G, T,
a; b; g; q, W, D, r1, r2, r3). However, a sensitivity study of
the model showed that, when dealing with powder
compaction with no excessive distortion, only the harden-
ing law and cap surface parameters exert a preponderant
influence on the final density prediction in the compact
[41]. Thus, only the parameters describing the cap failure
surface and the hardening law of the constitutive model are
estimated by means of inverse modeling, the elastic
parameters as well as the shear failure parameters are
predetermined from an experimental material characteriza-

tion of the cap model [41]. Consequently, the parameter
vector to be identified is reduced to p=(W, D, r1, r2, r3).

Estimating these parameters involves adjusting the
parameters in the finite element models until the calculated
density vector ρcal coincides as the least square with the
measured density vector ρexp. This is accomplished by
minimizing the cost function Φ with respect to the vector of
parameters p:

6 pð Þ ¼ 1

2

Xm
i¼1

ri pð Þ½ �2 ¼ 1

2
rTr ð23Þ

where m is the number of measurements. The residual
vector, r, is defined by

r ¼ rexp � rcal ð24Þ
The minimization of Eq. 23 is subject to constraints on

the parameters based on the physics of the problem. The
constraints are written in the form:

cj pð Þ � 0 j ¼ 1; q ð25Þ
where cj are the constraint functions and q is the number of
constraints. The set of p which satisfies the constraints is
called the feasible region. In many problems, it is important
to maintain the feasibility of the parameters throughout the
solution process in order to carry out the finite element
analyses. In the current estimation, bounds are required to
prevent the parameters from becoming negative.

Table 2 Boundaries and plastic consistency parameters of the plastic modes

Failure mode Stress state boundaries Incremental consistency parameters

Tension ITrial1;nþ1 � T

sTrialnþ1



 

 � FsðTÞ

(
Δl1;nþ1 ¼ T�ITrial1;nþ1

9K
Δl2;nþ1 ¼ 0
Δl3;nþ1 ¼ 0

Tension corner ITrial1;nþ1 � T

FsðTÞ < sTrialnþ1



 

 < FsðTÞ þ 2G

9K

T�ITrial1;nþ1

dFsðTÞ=dI1

8><
>:

Δl1;nþ1 ¼ sTrialnþ1k k�FsðTÞ
2G ;

Δl2;nþ1 ¼ T�ITrial1;nþ1

9K �Δl1;nþ1
dFsðTÞ
dI1

Δl3;nþ1 ¼ 0

Shear ITrial1;nþ1 � kn

FsðTÞ þ
T�ITrial1;nþ1

dFsðTÞ=dI1 < sTrialnþ1



 


sTrialnþ1



 

 < Fs knð Þ þ kn�ITrial1;nþ1

dFs knð Þ=dI1

8>>>>>><
>>>>>>:

Δl1;nþ1 ¼ 0

Δl2;nþ1 ¼ sTrialnþ1k k�Fs I1;nþ1ð Þ
2G

Δl3;nþ1 ¼ 0

Compressive corner
ITrial1;nþ1 < kn

sTrialnþ1



 

 > Fs knð Þ þ 2G

9K

kn�ITrial1;nþ1

dFs knð Þ=dI1

8><
>:

Δl1;nþ1 ¼ 0

Δl2;nþ1 ¼ kn�ITrial1:nþ1
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The parameter constraints, enforced by the interior
penalty function method, are incorporated directly in the
objective function, Φ*, as follows:

6
»
pð Þ ¼ 6 pð Þ þ

Xq
j¼1

z j pð Þ ð26Þ

where the weighted penalty functions, zj, are the inverse
barrier functions:

z j pð Þ ¼ wj

cj pð Þ j ¼ 1; q ð27Þ
with ωj being the non-negative weights.

The nonlinear least squares problem is solved using a
modified Levenberg–Marquardt method to account for the
weighted penalty functions included in the objective
function Φ*. Starting from an initial feasible parameter
guess, the modified Levenberg–Marquardt method deter-
mines a sequence of corrections to the parameters until
convergence is achieved according to specified criteria. The
convergence criterion for the optimization study is based on
the variation of the objective function value. If differences
in the objective function value between two subsequent
iterations is less than a specified positive number ξ,

6
»
pkþ1
� �� 6

»
pk
� �


 


 < x ð28Þ

the optimization process will stop and the final optimization
is achieved. The parameter correction, δpk, at iteration k is
calculated from the following system of equations:

JðkÞ
T
JðkÞ þ mðkÞIþ hðkÞ

� 	
dpðkÞ ¼ �JðkÞ

T
rðkÞ þ gðkÞ ð29Þ

where μ is Levenberg–Marquardt damping parameter (a
non-negative scalar), J is the Jacobian matrix of Φ, and g
and h contain the first and the second order derivatives,
respectively, of the weighted penalty functions with respect
to the parameters. The elements of J, g, and h are given by

Jis ¼ @ri
@ps

¼ @rcali
@ps

i ¼ 1;m ; s ¼ 1; n ð30Þ

gs ¼ �Pq
j¼1

@z j
@ps

s ¼ 1; n ð31Þ

hst ¼ �Pq
j¼1

@2z j
@ps@pt

s; t ¼ 1; n ð32Þ

Recall that m is the number of measured data and n is the
number of parameters.

To facilitate the choice of the Levenberg–Marquardt
parameter μ and improve the conditioning of the

system, Eq. 29 is scaled before it is solved. Defining A
and b as:

A ¼ JTJþ h ð33Þ

b ¼ �JTrþ g ð34Þ
The scaled matrix A and the scaled vector b are then
defined as:

Ast ¼ Astffiffiffiffiffiffiffiffi
AssAtt

p s; t ¼ 1; n ð35Þ

bs ¼ bsffiffiffiffiffi
Ass

p s ¼ 1; n ð36Þ
The scaled form of Eq. 29 to be solved for δp is then
written as:

Aþ m Ið Þ dp ¼ b ð37Þ
And δp is calculated from dp using

dps ¼ dpsffiffiffiffiffi
Ass

p s ¼ 1; n ð38Þ

The fact that Ass ¼ 1; s ¼ 1; n, allows μ to be controlled in
a manner that is problem independent and consistent from
iteration to iteration.

Because the parameters are contained implicitly in the
finite element formulation, a finite difference approxima-
tion of the Jacobian matrix J in Eq. 29 is made. The
Jacobian matrix is recalculated at every iteration by
perturbing the parameters one at a time and solving a direct
finite element problem for each perturbation.

The first derivatives of the penalty functions required to
calculate g are given by:

@z j
@ps

¼ � wj

c2j

@cj
@ps

j ¼ 1; q ; s ¼ 1; n ð39Þ

The second derivatives of the penalty functions required
to calculate h are approximated by

@2z j
@ps@pt

	 2
wj

c3j

@cj
@ps

� �
@cj
@pt

� �
j ¼ 1; q ;

s; t ¼ 1; n

ð40Þ

The modified Levenberg–Marquardt method and finite
element analysis are integrated in the solution algorithm as
shown in Table 3.

4.2 Application to the identification of the cap model
parameters of iron powder

The method described above is applied to determine the
cap material parameters of MP37HD iron powder
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manufactured by Domfer. The MP37HD powder grade
used in this study was premixed with 0.375% Acrawax
and 0.375% ST Lithium as lubricant and has a chemical
composition by weight of Cu 1.80%, graphite 0.75%,
and the balance is Fe. The industrial part, selected to
apply the inverse identification approach to, is one whose
geometry and filling positions for the different tools are
given in Fig. 3. It is an axisymmetrical part with two
levels. The tooling, used in the manufacturing of this part
comprises a die, a core rod, an upper punch, and two lower
punches.

The compaction sequence consists of four steps. The
first two consist of the descent of upper punch 1 and
lower punch 2. Lower punch 1 stays fixed throughout the
entire process. During the third compaction phase, the
die and core rod join the descent of the two punches. In
the last step, only the die and the upper punch continue
to descend. The compaction kinetics, described by the
movement of the different tools (position in mm), is
given in Table 4.

4.2.1 Finite element calculation of the answer

Considering both loading and geometric symmetries, an
axisymmetric element needs to be used. Our preliminary
analyses revealed that the eight-node CAX8 element has a
problem with discontinuous equivalent plastic strain at its
mid-node. Thus, we use the four node axisymmetric
element and two degrees of freedom per node CAX4
which provides better numerical stability especially in the
presence of high nonlinearities [42]. The lower degree of
the CAX4 shape function is supplemented by placing fine
elements at the critical regions of the part and by the fact
that the initial mesh was oriented in the direction of
compaction (Fig. 4).

The FE model consists of only about 456 elements and
591 nodes. We also place contact surfaces [42] at both the
powder and tool surfaces of Fig. 4. In addition, since our
main objective was the determination of the compact"s
density distribution, the simplest and numerically cheapest
way to achieve this was to impose nodal displacements at

Table 3 Inverse finite element optimization algorithm

1. Initialize the parameters p(0) and of the Levenberg-Marquardt damping parameter μ(0)

2. Solve the direct finite element problem at p(0) and evaluate the cost function Φ(0)

3. Initialize the penalty functions weights ωj. Evaluate the weighted penalty functions zð0Þj and the objective function Φ*(0)

4. For iteration k=0,1,2,…K

(a) Calculate the Jacobian matrix J(k) using the finite differences method by solving n direct problems.

(b) Calculate the penalty function derivatives to form h(k) and g(k)

(c) Solve Eq. 29 to determine the correction step to be applied to the parameters, dpðkÞ and update the parameters p kþ1ð Þ ¼ pðkÞ þ dpðkÞ

(d) Solve the direct finite element problem at p(k+1). Evaluate z kþ1ð Þ
j and Φ*(k+1)

(e) Check if Φ*(k+1)<Φ*(k)

(1) If false, increase μ and return to step 4c mðkÞ ¼ 10mðkÞ

(2) If true, reduce wj and μ

wj
kþ1ð Þ ¼ 0:1wj

ðkÞ

m kþ1ð Þ ¼ 0:1mðkÞ

(f) Verification that the convergence criteria is met

(1) If false, k=k+1 and return to step 4a

(2) If true, stop

R=20.7 mm

R=8 mm

R=32.5 mm

AA AA

CL
14.98 mm

55.52 mm

12.7 mm

24.5 mm
Section AA

Core rod
Upper punch 1
Lower punch 1
Lower punch 2
Die

Fig. 3 Picture, geometry and
tooling of the industrial part #1
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the powder boundary node sets. Also, as it can be seen in
Fig. 4, large displacement contact with Coulomb friction
was adopted for the interface regions between the powder
cavity and tooling component sides. Moreover, since very
small powder sliding occurs on punch faces, tied (sticking)
contact was adopted for these interface regions. Both
contact conditions were modeled using the “master-slave”
contact pair formulation in ABAQUS [42]. This formula-
tion requires the association of the master surface with the
stiffer interacting body (tooling component) whereas the
slave surface is associated with the second deformable body
(powder cavity). The friction coefficient was assumed to be
equal to 0.2 as in previous studies [43, 44] and its reliability
was verified by comparing simulated results with experi-
mental measurements as discussed in Section 5.

Moreover, the initial relative density of the powder is
assumed to be uniformly spread and corresponds to a value
of 36.5%. The applied load is translated into imposed
motion on the surface of the tools according to Table 4. The
tool motion is imposed in increments. For each increment
of motion and for each element, the relative density of the
powder at the integration points is calculated. Furthermore,
in the finite element calculation, the multi-criteria Cap type
constitutive model and the numerical integration schematic
described above are used.

Furthermore, the four-step FE problem was solved by
ABAQUS with a relatively small number of increments for

each one of the steps as indicated in Table 5. This table
summarizes the number of global equilibrium and contact
iterations required by the solver for each of the four load
increments. It also shows the average local iterations needed
at the integration point level by the implemented algorithm.
It is clear that despite of the relatively large deformation
increments, convergence of the closest point algorithm has
required a relatively small number of iterations.

4.2.2 Parameters optimization

The optimization strategy consists of solving the direct
problem using an initial set of the parameters, thus
generating a calculated distribution of the final density of
the compact, ρcal. To this numerical distribution, the
experimental distribution ρexp, determined using the Vick-
ers hardness method [45], is correlated. It is crucial that the
initial guess of parameters is reasonable, e.g., parameters
for a different powder mix. The optimization procedure has
to struggle with many local minima which may appear far
from physically acceptable values. It is normally necessary
to start the optimization from different starting points to
check the behavior in the neighborhood of the computed
optimum. The initial parameter values were set close to the
values obtained through the traditional experimental pa-
rameter estimation procedure for another type of powder,
namely Distaloy AE [41].

Filling position First step Second step Third step Fourth step

Core rod 48 48 48 29.2 29.2

Die 48 48 48 29.2 22.6

Lower punch 1 −25.1 −25.1 −25.1 −25.1 −25.1
Lower punch 2 30.42 29.62 20.22 0 0

Upper punch 1 45.4 41.6 30.3 9.6 4.9

Table 4 Compression kinetics
for industrial part #1

Imposed z 
displacement

Restricted r 
displacement

Sticking contact 
(master surface)

Sticking contact 
(slave surface)

Frictional contact 
(master surface)

Frictional contact 
(slave surface)

Fig. 4 Boundary conditions and
initial and deformed mesh
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The correspondence between the calculated density and
the experimental density is hardly automatic. Indeed, the
Vickers hardness measurement points are spread in a
random manner on the part’s surface and the meshing
nodes, where the density is evaluated, do not coincide very
often. Consequently, a smoothing technique had to be used
in order to make the two measurement types’ positions
coincide. Three smoothing techniques were investigated:
neural networks, krigeage, and interpolation functions. The
two first methods required processing that was external to
the optimization module, thus offsetting the automatic
aspect of the identification procedure. Furthermore, their
application to this case seemed more complicated and
required a higher calculation time. Thus, the interpolation
functions that could be used on all the elements of the
meshing, since they all possess the same reference element
(quadrilateral element with 4 nodes), was deemed more
suitable.

In the case under consideration here, the number of
parameters to be identified is n=5. The number of
measurements m, must therefore be greater than or equal
to n=5. This condition is guaranteed to always be respected
since the number of Vickers hardness measurements is
generally quite high (in this case, m=78). Table 6 contains
the identified parameter values for the iron powder whereas
Figs. 5, 6, and 7 represent the evolution of the objective
function and of different material parameters throughout the
identification process.

5 An integrated software environment

In order to make the simulation of powder compaction an
attractive design tool, an integrated simulation module has
been developed. This module is mainly intended to
facilitate and to automate some of the tedious modeling-

related tasks. It is composed of the I-Deas Master Series
CAD software [46], the ABAQUS nonlinear FE solver
[47], the ABAQUS-Post post-processing [48] software, an
in-house developed pre-processing and interfacing program
IDEQUS [49], and finally an inverse identification material
parameters module INVMOD. The integrated software
layout, as well as the main functions of its components, is
described in Fig. 8.

5.1 Pre-processing

The pre-processing is first performed through I-Deas, in
which the component geometries are defined and then
meshed using a semi-automatic mapped pattern. User-
defined macro functions, implemented into I-Deas, are then
used for the selection and the identification of the special
boundary regions of the powder cavity and tooling
components. IDEQUS automatically identifies, generates,
and pairs off contact surfaces using the element sets
selected by the macro functions. All the information is
written to a universal FE file which is then completed with
additional information and then translated into the ABA-
QUS format by way of the IDEQUS program.

5.2 Processing

ABAQUS is an FE solver capable of handling both
geometric and material nonlinearities, as well as the
frictional contact nonlinearities. One of its main advantages
is the open facility it offers for the definition of user
material models. In fact, the cap material model was

Statistic Step 1 Step2 Step 3 Step 4

Needed increments 17 18 18 18

Average number of global iterations per increment 9 9 13 13

Average number of local (UMAT) iterations per increment 12 10 13 14

Table 5 Summary of the nu-
merical performance

Table 6 Values of identified parameters for the iron powder

Parameter Initial value Identified value

W 0.8 0.864

D 0.1E-04 0.4091E-04

r1 1.0 0.621

r2 18.0 16.7

r3 0.5 0.383
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Fig. 5 Cost function evolution
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implemented into ABAQUS via the UMAT facility that
allows the user to define a constitutive model and
implement its numerical integration algorithm as a FOR-
TRAN subroutine. Thus, UMAT is called by the main
program at each element integration point within every
equilibrium iteration of each load increment in the
deformation process. The global FE problem was solved
using the classical Newton–Raphson method with a line-
search algorithm whereas the local material integration was
handled by the closest point projection algorithm.

5.3 Post-processing

The ABAQUS-Post software is used mainly for the
visualization of the predicted density maps within the
compacts. The stress distribution, as well as the deformed
shape of the tooling components, could also be post-
processed by the same software.

5.4 Inverse identification module

The main task of this module is to identify a selected set of
unknown parameters of the numerical cap model. The
unknown parameters are determined iteratively by mini-
mizing a cost function which expresses the discrepancy
between the experimental and the computed response of the
physical system under study, e.g., by comparing density
distributions. The experimental densities are determined by
means of the Vickers hardness technique. The numerical
density distributions are computed with the FE model. The
a priori unknown material parameters in the FE model are
iteratively updated in such a way that the computed
densities match the measured densities as closely as
possible. Figure 9 shows a flowchart of the applied inverse
method.

6 Validation

6.1 Validation of the inverse results with classical tests

The Cap plasticity material parameters of the iron powder
has been identified by Hrairi [41] based on the classical
homogenous tests. The aspect ratio and the hardening
parameters are determined by triaxial tests and isostatic
compaction respectively. Data from the triaxial load paths
as well as data points generated by the hydrostatic tests
were used to draw the iso-density curves representing the
cap surfaces at different relative densities. This fit shows an
increasing aspect ratio R as a function of density that
follows the empirical relation

RðrÞ ¼ r1 r� r2ð Þr3 ¼ 1:148 r� 38ð Þ0:208 ð41Þ

To determine the premix hardening law, we had to find
the volumetric plastic strain "pv as a function of I1, the
hydrostatic component of stress. For every isostatically
pressed specimen we determined "pv using the initial loose
density and the final measured post compaction density
(Eq. 11). The obtained values were plotted against the first
stress invariant corresponding to the hydrostatic pressures
that served to produce the specimen. This fitting process
(Eq. 9) permitted the determination of the hardening
parameters W=0.847 and D=0.4418E-04. W being a
measure of the maximum achievable volumetric plastic
strain.

A sensitivity study of the model, based on simulations
planned and analyzed using the Taguchi method, revealed
that, when dealing with powder compaction with no
excessive distortion, the most influential parameters on
the final density distribution are those related to the
hardening of the material. The identified values of the
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different parameters are summarized in Table 7 as well as
their respective relative influence on the final density
distribution in a compact, as determined by the sensitivity
analysis.

It can be noted from Table 7 that the results of the
inverse method and the classic, homogeneous tests are quite
similar when it comes to the hardening parameters but
differ considerably for the aspect ratio parameters. This
discrepancy can probably be explained by the fact of the
almost no contribution of these parameters to the final
density distribution in a compact. As one can see from

Table 7, the influence of R(ρ) sums to 4.4% compared to a
whopping 65.6% and 8% for W and D, respectively. Thus,
the physical system under consideration, i.e., the measure-
ment of final density, is rather insensitive to the values of R
(ρ). As a result it is hard to determine r1, r2, and r3 as
accurately as W and D. Therefore, in addition to the final
density in the compact, more measurable responses should
be taken into account in future research in order to
accurately determine all the parameters of the Cap plasticity
model.

6.2 Application of the results on an industrial part

The pressing of a gear, as shown in Fig. 10, is simulated to
evaluate the estimated material parameters. Manufacture of
this part requires, other than the core rod and die, two upper
punches and three lower punches. Lower punch 1 does not
move, lower punch 2 is mounted on a spring, and there is a
level in upper punch 2.

The compaction sequence is made up of three steps.
During the first step, lower punches 2 and 3, as well as the
two upper punches, begin to descend. Lower punch 1
remains fixed throughout the process. During the second

Initial parameter 
estimates

Boundary 
conditions

Experiment FE model

Measured 
densities, ρexp

Computed 
densities, ρcal

Difference

Updated 
parameters

Cost function 
minimum?

Material 
parameters

Yes

No Sensitivity 
calculation

Experimental setup

FE model

Parameter estimation strategy

Fig. 9 Flow-chart of the inverse method for material parameters
identification

Table 7 Values and relative importance of the iron powder
parameters

Parameter Inverse method Classical tests Contribution (%)

W 0.864 0.847 65.6

D 0.4091E-4 0.4418E-4 8.0

r1 0.621 1.148 1.45

r2 16.7 38 1.07

r3 0.383 0.208 1.88

ABAQUS
Nonlinear FE 

solution

USER

IDEQUS
• Prescribe the displacement 
sequence of  each tool
• Definepowderand tooling 
materials and friction coefficients
• Transformthe Ideas universal file 
into an Abaqusinput file

I-DEAS
• Definition of tooling 
and powder geometries
• Meshing

• Identification of 
interface and boundary 
limits
• Generation of a FE 
universal file

Graphical 
macros

Boundary 
region

selection and 
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UMAT
Cap Material model 
implemented into 

Abaqus User 
Material Routine

ABAQUS-Post
Results post 
processing

INVMOD
Estimate 
material 

parameters by 
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Fig. 8 Integrated software
framework for powder compaction
simulation
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compaction step, the die and the core rod join the descent of
the punches. At the end of this step, the two upper punches
continue to descend, thus ensuring the compaction of the
part from the top. The compaction kinetics, describing the
motion of the various tools (position in mm), is given in
Table 8.

Results from the simulations are depicted in Fig. 11
together with an experimentally measured density distribu-
tion using the Vickers hardness method. This method was
applied on compacted parts according to the prescribed
kinematics (Table 8) leading to the density distributions
shown in Fig. 11b. This Vickers hardness measurement
technique was used to obtain apparent hardness also called
macrohardness, i.e., the average hardness of a porous
material. Its procedure is well documented in ASTM E92-
82 standard [50]. This standard offers various loading from
1–120 kgf applied to an indenter of pyramidal geometry
with face angle of 136°. In this work, a 5 kgf load (HV 5)
was used as recommended in MPIF standard 43 [51]7.
Measurements were performed on five billets of different
densities. Each billet had two faces on which n=15
hardness measurements were realized in a 3×5 pattern.
Using a linear regression technique, the relative density of

green compacts and the logarithm of Vickers hardness can
be correlated with a linear model:

r ¼ 19:306 log HVð Þ þ 39:831 ð42Þ

Error limits introduced by this model, by sample
preparation factors and by the hardness measurements can
be established to 
 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

0:05þ 7:8 n=ð Þp
with a confidence

level of 68%. Curiously, most of the error is caused by the
Vickers measurement, and thus, can significantly be
reduced by taking and averaging “n” measurements in a
small area. The standard variation on Vickers hardness
measurements was typically under 3 kg/mm2. This results
in an inaccuracy of approximately 2% in the worst cases,
i.e., at low density ranges.

The computed density distribution, based on the esti-
mated parameters, shows a reasonable agreement with the
experimental result along the outer boundary and in the
center. However, along the core rod, the computed results
differ more compared to the experiment. As illustrated at
some critical points in the compact, the maximum absolute
error between densities was found to be 2.3%
corresponding to the precision of the experimental method.

Filling position First step Second step Third step

Core rod 43.821 43.821 31.765 27.255

Die 43.821 43.821 31.765 20.005

Lower punch 1 −12.2 −12.2 −12.2 −12.2
Lower punch 2 14.68 11.716 0 0

Lower punch 3 8.819 7.877 −2.989 −2.989
Upper punch 1 43.595 36.385 24.355 12.5

Upper punch 2 24.613 17.403 5.373 4.411

Table 8 Compression kinetics
for industrial part #2

CL
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2.97
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2.01

24.7

.5
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Core rod
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Upper punch 2
Lower punch 1
Lower punch 2
Lower punch 3
Die

Fig. 10 Picture, geometry and tooling of industrial part #2
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However, one can notice a big discrepancy between the
range of the relative density of simulation results which
varies from 63.5% to 85.1% and that of the experimental
data which shows a variation between 80.5% and 86.38%.
This difference in range is seen only in the circled zone
where there is a sharp change of section (Fig. 11). The
numerical simulation rightly predicts this important density
gradient (63.5–80.1%). However, no local density measure-
ments could be achieved in this region of the part. In fact,
this region was fractured during its metallographic prepa-
ration. This fracture was predictable from the simulation
results that showed an important density gradient near this
corner of the part. Consequently, a global density measur-
ing technique was applied to the fractured region. The
obtained value (72%) agrees well with simulated results,
stating that in that region, density varies between 63.5%
and 80.1%

Since the results obtained showed the desired degree of
precision, the meshing initially proposed was deemed
adequate and did not require further adjustment. The
simulation of this compaction sequence without the necessity
for an intermediate meshing would not have been possible if
the initial meshing had not been conceived as a function of the
kinetics used in the manufacturing of this part.

7 Conclusion

This work has been focused on a unified approach for
parameters identification of P/M specimens in powder
compaction process. Thus, it has created an integrated
simulation environment capable of using finite elements
and inverse optimization to evaluate the density distribution
resulting from the compaction process. The problem of
rigid die compaction of ductile metal powders involves

material, geometric as well as contact nonlinearities. While
the last two nonlinearities were handled automatically by
the ABAQUS FE solver, the first involves a material model
unavailable in ABAQUS and hence the elastoplastic cap
model had to be formulated and integrated into the software
in order to be able to simulate the behavior of the metal
powder medium. The closest point projection algorithm
was used for the numerical integration of the multisurface
plasticity model. Due to its flexibility and capacity to
represent all the compaction stages, the cap material model
was shown to yield very good results as far as the final
density was the main concern and despite the fact that the
model was not completely characterized. This is however
expectable since the final density is mainly sensitive to the
cap hardening parameters which seem to have been
correctly identified.

Using this integrated simulation module, the simulation
of the compaction of an industrial PM part has been
performed successfully thus demonstrating the practical
industrial applications of the computational approach.
Indeed, a comparison between the experimental results
and those obtained by simulation, using parameters identi-
fied inversely, revealed that the maximum absolute error
between densities was found to be 2.3% corresponding to
the precision of the experimental method. Also, the results
from the current work show that inverse modeling of the
powder-pressing experiment is a viable method for deter-
mining material parameters. It serves as an alternative to the
already established methods and is generally less expensive
to carry out. The concept proposed in this work is a flexible
approach for identification of cap material model and can
be useful to apply the results to metalworking industry. The
information derived can be used for the subsequent
quantitative design as well as optimization of the powder
metallurgy processes.
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In the current work, the parameters describing the cap
failure surface and the hardening law of the constitutive
model have been determined. To be able to determine the
elastic moduli as a function of density and compacting
pressure by means of inverse modeling, several unloading
steps should be incorporated in the experiment. This was
not done in the experiments carried out here, thus calls for
further investigations. It may be desirable also to have a
separate experiment for the shear failure part of the model.
Another research orientation will be the development of a
3D simulation module, capable of modeling general non-
axisymmetric applications.
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