
Large displacement contact with Coulomb friction was adopted for the interface regions between the
powder cavity and tooling component sides. Moreover, since very small powder sliding occurs on punch
faces, tied (sticking) contact was adopted for the these interface regions. The friction coefficient was as-
sumed to be equal to 0.2 as in previous studies (Weber and Brown, 1989; Trasorras et al., 1989; Shima and
Saleh, 1993) and its reliability was verified by comparing simulated results with experimental measurements
as discussed in Section 6. Both contact conditions were modeled using the ‘‘master-slave’’ contact pair

Fig. 4. Boundary regions identified by user developed macro-functions.

Fig. 3. Integrated simulation module.
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formulation of ABAQUS (HKS, 1995b). This formulation requires the association of the master surface with
the stiffer interacting body (tooling component) whereas the slave surface is associated with the second
deformable body (powder cavity). IDEQUS automatically identifies, generates and pairs off contact surfaces
using the element sets selected by the macro functions.

All the information is written to a universal FE file which is then completed with additional information
and then translated into the ABAQUS format by way of the IDEQUS program. This tool also permits to:

• Define powder and tooling material parameters as well as friction coefficients.
• Prescribe the displacement sequence of each tooling component.
• Define the solution control parameters.

4.3. Processing and post-processing

ABAQUS is a FE solver capable of handling both geometric and material nonlinearities, as well as the
frictional contact nonlinearities. One of its main advantages is the open facility it offers for the definition of
user material models. In fact, the cap material model was implemented into ABAQUS via the UMAT facility
that allows the user to define a constitutive model and implement its numerical integration algorithm as a
Fortran subroutine (HKS, 1995b). Thus, UMAT is called by the main program at each element integration
point within every equilibrium iteration of each load increment of the deformation process. The global FE
problem was solved using the classical Newton–Raphson method with a line-search algorithm whereas the
local material integration was handled by the closest point projection algorithm (Simo, 1992; Koopman
et al., 1992).

Finally, the ABAQUS-Post software (HKS, 1995a) is used mainly for the visualization of the predicted
density maps within the compacts. The stress distribution, as well as the deformed shape of the tooling
components, could also be post-processed by the same software.

5. Industrial application

5.1. Scope

In this section, a typical compaction case study is presented in order to illustrate the industrial use and to
assess the predictive capabilities of the simulation module. The studied part is a three level axisymmetric
part, made from the previously characterized 316L stainless steel powder and produced on an industrial
basis (Fig. 5). It is compacted in a 250 t hydraulic press using a rigid die and a set of two upper and three
lower punches, all made from tool steel.

Since the studied part production started before the simulation module had become operational, the use
of this module was not for predictive purposes but for:

• the validation of simulation results;
• and for the investigation of part cracking problems.

First, we start by the simulation of the part compaction as it is performed in the production press. Then,
the obtained density distribution is to be validated by comparing it with a second distribution obtained by
the developed experimental technique. Finally, in order to solve the part cracking problem, the module is
used for investigating the effects of change in the compaction sequence on the density gradient in the
compact.
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5.2. Data modeling

The data set required for the modeling activity includes the tooling geometry, the exact position of each
tooling component at each compaction step including the filling and the pressing positions (Fig. 5) and the
powder initial density in the cavity. Due to the densification resulting from the automatic press filling, this
density is different from the apparent density given by the powder manufacturer. It should be calculated by
dividing the final compact mass by the cavity volume. For this application, the initial relative density was
38% whereas apparent density given by the manufacturer was 33%.

As shown in Fig. 6 and Table 1, the first step of the compaction sequence is a powder transfer step,
essential to press the lower (inner) level of the part. In order to avoid potential part cracking, any powder
transfer operation should be completed prior to any effective compaction step. For this reason, we con-
sidered the post-transfer position as the initial modeling position. Thus, the effective compaction sequence
consists of two steps.

5.3. Finite element mesh and boundary conditions

The powder initial geometry corresponds to the cavity shape after the powder transfer step whereas the
tooling component geometry were simplified since no tooling stress analysis is involved in this study.
Moreover, since lower punches 1 and 2 move in unison after powder transfer, they have been modeled as a
single punch named ‘‘lower punch 1’’. ABAQUS CAX4 four node axisymmetric element (HKS, 1995b) was
used to mesh the geometrical models of the tooling components as well as the powder cavity (Fig. 7).

Fig. 6. Tooling and pressing sequence.

Fig. 5. Part geometry.
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Ideas user’s defined macro functions were implemented and used to identify specific interaction and
boundary condition regions. IDEQUS was subsequently used to prescribe the boundary conditions for the
analysis steps corresponding to the two sequence compaction steps. The friction coefficient between powder
and tool sides was taken to be equal to 0.2 as in previous studies.

5.4. Results

The two-step FE problem was solved by ABAQUS with a relatively small number of increments for each
one of the steps. In fact, only four increments were needed for each of the loading steps. In addition, the
global Newton–Raphson solution scheme, as well as the local implementation scheme of the cap model,
behaves very well. In fact, the number of global equilibrium iterations per increment ranged between 2 and
4. Besides, an average number of 7 local iterations were needed for the material integration algorithm at
each global equilibrium iteration. The obtained density distribution is presented in Fig. 8.

In order to validate the simulation results, an experimental density map, presented (Fig. 9), was obtained
by the method based on the correlation with Vickers hardness measures. 1 Globally, agreement between

Fig. 7. Initial mesh and boundary conditions of the three-level part.

Table 1

Tooling positions

Tool Positions

Filling Transfer Interm. pressing Final

Upper punch 1 0 �26.6 �28.5 �28.5

Upper punch 2 0 0 �17.5 �17.5

Lower punch 1 �5 �31.6 �31.6 �31.1

Lower punch 2 �31.6 �31.6 �31.6 �31.1

Lower punch 3 �5.9 �5.9 �18.5 �18.5

1 The inner level of the part was too weak to resist during the metallographic preparation procedure.
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simulated and experimental maps is within the density range of 1%, which is the accuracy of the experi-
mental method (Guillot and Chtourou, 1996). This validation confirmed the high density gradient in the
lower region of the part which constitutes a serious quality problem.

5.5. Improving part quality

As may be seen from the simulation and the experimental results, the compaction sequence used for this
part led to a huge density gradient in the inner corner region. This gradient is very likely responsible of the
noticed part cracking. Part quality could easily be improved by balancing the compaction sequence. This
could simply be done by slightly increasing the filling height of the inner level together with an additional
compaction of this region using upper punch 1. Furthermore, the compaction sequence could be simplified
by using a single step instead of the two-step sequence. This solution was investigated by way of simulation
featuring a new compaction sequence (Table 2) leading to the same final dimensions of the compact.
Simulation results (Fig. 10) show that this new sequence effectively leads to a more homogeneous and
stronger compact. Since results of this figure were intended to illustrate the use of the integrated module in
compaction design and not to serve as model validation tests, no corresponding experimental results were
obtained.

Fig. 8. Final shape and density distribution.

Fig. 9. Experimentally obtained density distribution.
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6. Conclusion

In the first (Chtourou et al., 2001) of a series of two papers on PM, the problem of experimental
characterization of the material model for the 316L stainless steel powder was addressed together with its
experimental validation procedure.

In this second part, computational aspects are addressed based on the FE simulation approach in an
integrated simulation environment for industrial application. The problems of rigid die compaction of
ductile metal powders involves material, geometric as well as boundary conditions (frictional contact)
nonlinearities. While the last two nonlinearities were handled automatically by the ABAQUS FE solver, the
first involve a material model unavailable in ABAQUS and hence the elastoplastic cap model had to be
formulated and integrated into the software in order to be able to simulate the behavior of the metal
powder medium. The closest point projection algorithm was used for the numerical integration of the
multisurface plasticity model. Due to its flexibility and capacity to represent all the compaction stages, the
cap material model was shown to yield very good results as far as the final density was the main concern
and despite the fact that the model was not completely characterized. This is however expectable since the
final density is mainly sensitive to the cap hardening parameters which seem to have been correctly iden-
tified. Since however no data was available about the shear failure mode the present model parameters
cannot correctly simulate the ejection phase and associated residual stresses.

Finally, an integrated simulation environment has been developed and the simulation of the compac-
tion of an industrial PM part has been performed successfully thus demonstrating the practical indus-
trial applications of the computational approach. This application illustrates the modeling activity
tasks and demonstrates the accuracy and the numerical efficiency of the implemented computational
algorithms.

Fig. 10. Simulation results obtained using the modified sequence.

Table 2

Tooling positions according to the modified compaction sequence

Tool Positions

Filling Transfer Final pressing

Upper punch 1 0 �25.6 �29.5

Upper punch 2 0 0 �17.5

Lower punch 1 �6 �31.6 �31.1

Lower punch 2 �31.6 �31.6 �31.1

Lower punch 3 �5.9 �5.9 �18.5
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Further studies are still underway and concern the construction and calibration of a triaxial testing
machine aimed at the gathering of the missing data (especially for the failure mode) or incomplete data on
elastic behavior at low density levels. Also adjustment of material parameters through optimal parameters
identification and inverse modeling process is considered. This will be applied in order to get rid of the
current hypothesis of uniform deformation used in extracting material parameter values from the experi-
mental measurements.
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Appendix A. Derivation of the algorithmically consistent tangent moduli of the cap model 2

A.1. Case 1: Perfect plasticity

The first variation of the plastic strains is given by

depnþ1 ¼
X
i

dðDkiÞ
ofi
or

�
þ Dki

o2fi
or2

: dr

�
ðA:1Þ

When combined with Eq. (21) the above relation gives

drnþ1 ¼ N : denþ1

 
�
X
i

d Dkið Þ ofi
or

!
ðA:2Þ

where

N�1 ¼ C�1 þ
X
i

Dki
o2fi
or2

ðA:3Þ

This tensor could be inverted numerically or analytically using the Sherman–Morrison method (Hof-
stetter et al. 1993). This method is privileged since it is numerically cheaper. Furthermore, the plastic
consistency parameters Dki are obtained by use of the normality condition of each of the active yield
functions:

dfi ¼
ofi
or

: dr ¼ 0 ðA:4Þ

Using this relation and Eq. (A.3), one can define the following equation system in which Dki are the
unknowns:X

i

ofj
or

: N :
ofi
or

d Dkið Þ ¼ ofj
or

: N : de ðA:5Þ

2 Subscripts i and j refer to the active yield surfaces.
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This system can be more conveniently expressed as follows:

X
i

gjid Dkið Þ ¼ ofj
or

: N : de ðA:6Þ

where

gji ¼
ofj
or

: N :
ofi
or

ðA:7Þ

which permits the determination of the plastic consistency parameters:

d Dkið Þ ¼
X
j

g�1
ij

ofj
or

: N : de

� �
ðA:8Þ

Finally, the integration of this last relation into Eq. (A.3) we can express the elastoplastic tangent moduli
as

drnþ1

denþ1

¼ N �
X
i

X
j

g�1
ij N :

ofi
or

�
� N :

ofj
or

�
ðA:9Þ

A.2. Case 2: Hardening plasticity (cap mode)

Since the yield function of the cap mode involves the hardening parameter k, the first variation of plastic
strains is given by

dep ¼ dðDk3Þ
of3
or

þ Dk3

o2f3
or2

: dr

�
þ o2f3
orok

: dk
�

ðA:10Þ

Incorporating Eq. (A.10) into Eq. (21), and using the same tensor N defined by Eq. (A.3), one can obtain:

dr ¼ N : de � N :
of3
or

dðDk3Þ � Dk3N :
o2f3
orok

dk ðA:11Þ

In addition, the derivation of cap yield function relatively to its two independent variables gives:

df3 ¼
of3
or

: dr þ of3
ok

: dk ¼ 0 ðA:12Þ

Furthermore, in order to completely define the problem we should introduce the incremental form of the
hardening law (Eq. (A.13)) as well as its derivative (Eq. (A.14)):

1

3
DIpðkÞ � Dk3

of3
oJ

¼ 0 ðA:13Þ

1

3

d DIp kð Þð Þ
dk

dk � d Dk3ð Þ of3
oJ

� Dk3 �
o2f3
oJ or

: dr

�
þ o2f3
oJ ok

: dk
�

¼ 0 ðA:14Þ

Finally, this last relation combined with Eq. (A.12) in which Eq. (A.11) is inserted, gives the expression
of tangent moduli:

drnþ1

denþ1

¼ N �
X
i

X
j

a�1
ij N :

of3
or

�
� N :

o2f3
orok

�
ðA:15Þ
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where subscripts i and j do not refer any more to active yield surfaces but simply takes the values 1 and 2
and where coefficients a�1

ij are the components of the inverse of matrix a defined by:

a11 ¼
of3
or

: N :
of3
or

ðA:16aÞ

a12 ¼
of3
or

: N :
o2f3
orok

� 1

Dk3

of3
ok

ðA:16bÞ

a21 ¼
o2f3
orok

: N :
of3
or

þ 1

Dk3

of3
oJ

ðA:16cÞ

a22 ¼
o2f3
orok

: N :
o2f3
orok

þ 1

Dk3

o2f3
oJ ok

� 1

3Dk2
3

oðDIpðkÞÞ
ok

ðA:16dÞ
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