Série N° 3

Exercice 1

Un pont élévateur hydraulique est un appareil de manutention qui permet de lever ou d'abaisser une charge lourde pour la placer à la bonne hauteur afin de faciliter le travail.

La figure ci-contre représente le schéma cinématique du pont élévateur. Soit $R_0(O, \vec{x}_0, \vec{y}_0, \vec{z}_0)$ un repère lié à S_0 . La plate-forme Sest en mouvement de translation d'axe (A, \vec{y}_0) par rapport au bâti S_0 .

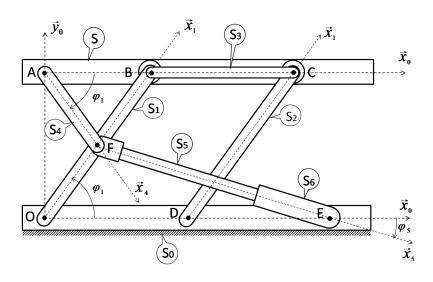


FIGURE 1 – Schéma cinématique minimal d'un pont élévateur

On donne ci dessous un extrait du cahier des charges fonctionnel du pont élévateur.

Fonction	Critère	Niveau
FS1 : Permettre de monter une charge lourde	Temps nécessaire	$t \le 30 s$
FS2 : Assurer la sécurité du travailleur	Vitesse de montée et descente	$V \le 15 cm/s$

Le mécanisme est constitué des éléments suivants :

- d'un bras $S_1(OFB)$ qui est en liaison pivot d'axe $(O, \vec{z_0})$ avec S_0 ;
- d'un bras S_2 qui est en liaison pivot d'axe $(D, \vec{z_0})$ avec S_0 ;
- d'un bras S_3 qui est en liaison pivot d'axe $(B, \vec{z_0})$ avec S_1 et d'axe $(C, \vec{z_0})$ avec S_2 ;
- d'un vérin (S_6, S_5) , le corps S_6 est en liaison pivot d'axe $(E, \vec{z_0})$ avec S_0 et la tige du vérin S_5 présente une liaison glissière d'axe $(F, \vec{x_5})$ avec S_6 d'une part et en liaison pivot d'axe $(F, \vec{z_0})$ avec S_1 d'autre part;
- d'un levier S_4 qui en liaison pivot d'axe $(A, \vec{z_0})$ avec la plate forme S. S_4 est aussi en liaison pivot d'axe $(F, \vec{z_0})$ avec la tige du vérin S_5 .

Les repères $R_1(O, \vec{x}_1, \vec{y}_1, \vec{z}_0)$, $R_2(D, \vec{x}_1, \vec{y}_1, \vec{z}_0)$, $R_3(B, \vec{x}_0, \vec{y}_0, \vec{z}_0)$, $R_4(F, \vec{x}_4, \vec{y}_4, \vec{z}_0)$ et $R_5(F, \vec{x}_5, \vec{y}_5, \vec{z}_0)$ sont liés respectivement aux solides S_1, S_2, S_3, S_4 et S_5 . On donne :

$$\overrightarrow{OB} = \overrightarrow{DC} = l\vec{x}_1 \; ; \; \overrightarrow{OF} = \frac{l}{2}\vec{x}_1 \; ; \; \overrightarrow{AF} = \frac{l}{2}\vec{x}_4 \; ; \; \overrightarrow{FE} = \lambda(t)\vec{x}_5 \; ; \; \overrightarrow{OE} = a\vec{x}_0$$

- 1) Ecrire la fermeture géométrique de la chaine cinématique fermée $(S_0, S_1, S_5, S_6, S_0)$. En déduire l'expression de λ en fonction de φ_1 .
- 2) Déduire les positions extrêmes λ_{max} et λ_{min} ainsi que la course $\Delta\lambda$ lorsque φ_1 varie entre 0 et $\frac{\pi}{2}$. Déterminer la vitesse minimale du vérin qui permet de vérifier le critère imposé par le cahier des charges fonctionnel. (A.N. : l = 1,5 m; a = 2,5 m)
- 3) Déterminer le torseur cinématique du mouvement de S_3 par rapport à S_0 en B. Quelle est la nature de ce mouvement.
- 4) Déterminer en fonction de $\dot{\varphi}_1$ le torseur cinématique du mouvement de S_1 par rapport à S_0 en F.

- 5) Déterminer le torseur cinématique du mouvement de S_4 par rapport à S_0 en A.
- 6) Exprimer dans la base $(\vec{x}_0, \vec{y}_0, \vec{z}_0)$ le torseur cinématique du mouvement de S par rapport à S_0 en A. Quelle est la nature de ce mouvement.
- 7) Quelle condition doit vérifier la vitesse angulaire $\dot{\varphi}_1$ pour assurer la sécurité du travailleur.
- 8) Déterminer en fonction de $\dot{\lambda}$ le torseur cinématique de (S_5/S_6) au point F.

Exercice 2 : Etude cinématique d'une presse hydraulique

Une presse hydraulique est une machine qui fournit une grande force de compression. Elle transmet un déplacement et un effort démultiplié afin d'écraser ou de déformer un objet.

La presse représentée sur le schéma ci dessous possède une chaîne cinématique composée du vérin de corps (1) et de tige (2), d'un levier (3), d'un maneton (4) et du piston (5). Ce dernier exerce l'effort de compression désiré.

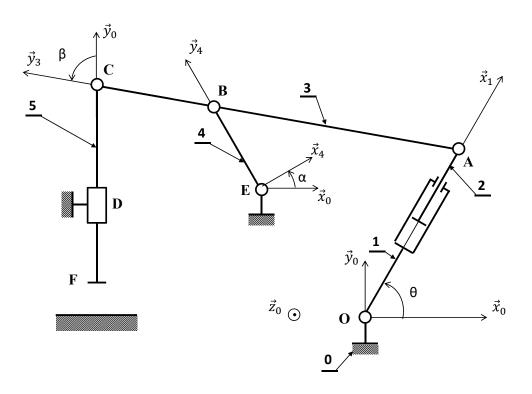


FIGURE 2 – Schémas cinématique minimal d'une presse hydraulique

On propose les repères suivants :

- $R_0(O, \vec{x}_0, \vec{y}_0, \vec{z}_0)$ est lié au bâti (0);
- $R_1(O, \vec{x}_1, \vec{y}_1, \vec{z}_0)$ et $R_2(A, \vec{x}_1, \vec{y}_1, \vec{z}_0)$ sont liés respectivement au corps (1) et la tige (2) du vérin, avec $\theta = (\vec{x}_0, \vec{x}_1) = (\vec{y}_0, \vec{y}_1)$;
- $R_3(A, \vec{x}_3, \vec{y}_3, \vec{z}_0)$ est lié au levier (3), avec $\beta = (\vec{x}_0, \vec{x}_3) = (\vec{y}_0, \vec{y}_3)$;
- $R_4(E, \vec{x}_4, \vec{y}_4, \vec{z}_0)$ est lié au maneton (4), avec $\alpha = (\vec{x}_0, \vec{x}_4) = (\vec{y}_0, \vec{y}_4)$;
- $R_5(D, \vec{x}_0, \vec{y}_0, \vec{z}_0)$ est lié au piston (5).

On donne:

$$\overrightarrow{OA} = \lambda \vec{x}_1 \ , \ \overrightarrow{AC} = L\vec{y}_3, \ \overrightarrow{BC} = a\vec{y}_3, \ \overrightarrow{EB} = b\vec{y}_4, \ \overrightarrow{FD} = \eta \vec{y}_0 \ , \ \overrightarrow{OE} = -c\vec{x}_0 + h\vec{y}_0 \ , \ \overrightarrow{DE} = d\vec{x}_0 + d\vec{y}_0 \ , \ \overrightarrow{DE} = d\vec{x}_0 + d\vec$$

IPEIS 2 A.U. 2020- 2021

 λ , η , α , β et θ sont des paramètres variables en fonction du temps; L, a, b, c, d et h sont les constantes positives.

Objectif

L'objectif du travail proposé est de déterminer la vitesse minimale de la tige de vérin qui permet de vérifier le critère imposé par le cahier des charges ci dessous.

Exigence technique	Critère	Niveau
FS1 : Réaliser une forme dans une pièces	Vitesse de déplacement du piston	$\geq 20 \text{ cm/s}$

- 1) Déterminer le vecteur vitesse de la tige de vérin : $\overrightarrow{V}(A \in 2/1)$.
- 2) Déterminer par composition du mouvement le vecteur vitesse du point A appartenant à (2) en mouvement par rapport à (0).
- 3) En déduire le vecteur vitesse du point C appartenant à (3) en mouvement par rapport à (0).
- 4) Déterminer le torseur cinématique, au point F, du piston (5) dans son mouvement par rapport au bâti (0).
- 5) Écrire la condition cinématique au centre C de la liaison pivot entre le piston (5) et le levier (3). Déduire par projection sur la base B_0 du repère R_0 , le système d'équation qui en découle.
- 6) Exprimer dans la base B_0 le vecteur vitesse du point B appartenant à (3) dans son mouvement par rapport à (0). Les composantes seront exprimées en fonction de $\dot{\eta}$, $\dot{\beta}$ et β .
- 7) Déterminer le torseur cinématique, au point E, du maneton (4) dans son mouvement par rapport à 0. En déduire le vecteur vitesse $\overrightarrow{V}(B \in 4/0)$.
- 8) Déduire deux relations scalaires entre $\dot{\eta}$, $\dot{\beta}$ et $\dot{\alpha}$.

On propose maintenant d'étudier le système au moment de la percussion avec la pièce.

On donne:

$$\alpha = \frac{\pi}{6} \ ; \ \beta = \frac{2\pi}{3} \ ; \ \theta = \frac{\pi}{2} \ ; \ \lambda = \frac{1}{2} \ ; \ a = \frac{2}{5} \ ; \ b = \frac{1}{4} \ ; \ L = 1$$

- 9) Récrire les relations obtenues dans les questions 5 et 8. En déduire une relation entre λ et $\dot{\eta}$.
- 10) Déterminer la vitesse minimale de la tige de vérin qui permet de vérifier le critère imposé par le cahier des charges.

Exercice 3

Le robot de traite "Astronaut" est un système de traite automatique assurant, d'une part, la traite des vaches et, d'autre part, l'alimentation et le contrôle de la qualité du lait. Le système de manoeuvre du robot (support de cette étude), est la partie principale du système de traite. Ce système (représenté par le schéma cinématique plan de la figure 3) assure le positionnement correct des gobelets pour leur branchement sur les trayons de la vache pour extraire du lait.

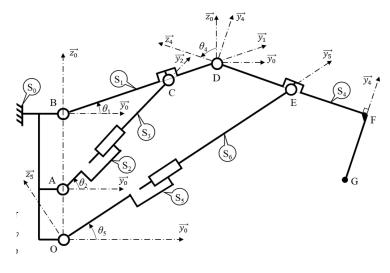


FIGURE 3 – Schéma cinématique minimal du robot

Ce système est composé des éléments suivants :

- Un bâti-support S_0 fixe par rapport au sol. Soit le repère $R_0(O, \vec{x}_0, \vec{y}_0, \vec{z}_0)$ associé.
- Un bras S_1 , en liaison pivot d'axe (B, \vec{x}_0) avec le bâti S_0 et en liaison pivot d'axe (D, \vec{x}_0) avec le bras S_4 . Soit $R_1(B, \vec{x}_0, \vec{y}_1, \vec{z}_1)$ un repère lié au bras S_1 tel que : $(\vec{y}_0, \vec{y}_1) = (\vec{z}_0, \vec{z}_1) = \theta_1$. L'extrémité du bras S_4 (point G) porte le système de branchement aux trayons, le système pulsateur, le système de nettoyage des trayons (brosses) et la tête de traite. Soit $R_4(B, \vec{x}_0, \vec{y}_4, \vec{z}_4)$ un repère lié au bras S_4 tel que : $(\vec{y}_0, \vec{y}_4) = (\vec{z}_0, \vec{z}_4) = \theta_4$.
- Un vérin (S_2, S_3) dont le corps S_2 est en liaison pivot d'axe (A, \vec{x}_0) avec le bâti S_0 alors que sa tige S_3 est, d'une part, en liaison glissière d'axe (A, \vec{y}_2) avec S_2 et d'autre part, en liaison pivot d'axe (C, \vec{x}_0) avec le bras S_1 . Soit $R_2(A, \vec{x}_0, \vec{y}_2, \vec{z}_2)$ un repère lié au corps du vérin S_2 tel que : $(\vec{y}_0, \vec{y}_2) = (\vec{z}_0, \vec{z}_2) = \theta_2$.
- Un vérin (S_5, S_6) dont le corps S_5 est en liaison pivot d'axe (O, \vec{x}_0) avec le bâti S_0 alors que sa tige S_6 est, d'une part, en liaison glissière d'axe (O, \vec{y}_5) avec S_5 et d'autre part, et en liaison pivot d'axe (E, \vec{x}_0) avec le bras S_4 . Soit $R_5(O, \vec{x}_0, \vec{y}_5, \vec{z}_5)$ un repère lié au corps du vérin S_5 tel que : $(\vec{y}_0, \vec{y}_5) = (\vec{z}_0, \vec{z}_5) = \theta_5$.

On donne : $\overrightarrow{OB} = b\vec{z_0}$; $\overrightarrow{BD} = k\vec{y_1}$; $\overrightarrow{OA} = a\vec{z_0}$; $\overrightarrow{AC} = \lambda(t)\vec{y_2}$; $\overrightarrow{CD} = l\vec{y_1}$; $\overrightarrow{GF} = c\vec{y_4}$; $\overrightarrow{FE} = d\vec{z_4}$; $\overrightarrow{OE} = \mu(t)\vec{y_5}$; $\overrightarrow{ED} = h\vec{z_4}$; (b, k a, l, c, d et h : constantes)

L'objectif du travail est de vérifier si le critère suivant concernant la vitesse $\vec{V}(G \in S_4/S_0)$ du point G de la tête de traite peut être respecté.

Fonction	Critère	Niveau
FS1 : Assure le positionnement correct des gobelets	Vitesse de la tête de traite	$V_G \le 10cm/s$

- 1) Dresser le graphe de liaisons du système de manoeuvre du robot et donner la nature de la chaîne.
- 2) Déterminer les vecteurs suivants $\vec{\omega}_{i/j}$ étant la vitesse instantanée de rotation du mouvement du solide S_i para rapport au solide S_j : $\vec{\omega}_{1/0}$, $\vec{\omega}_{2/0}$, $\vec{\omega}_{3/2}$, $\vec{\omega}_{4/0}$, $\vec{\omega}_{5/0}$ et $\vec{\omega}_{6/5}$.
- 3) Déterminer, par cinématique des solides, $\overrightarrow{V(C)}_{1/0}$ et $\overrightarrow{V(D)}_{1/0}$.
- 4) Déterminer la nature du torseur cinématique du mouvement de S_1/S_0 ainsi que son axe central (s'il existe).
- 5) Déterminer par composition du mouvement le torseur cinématique du mouvement de S_3 par rapport à S_0 au point C en fonction de λ , $\dot{\lambda}$ et $\dot{\theta}_2$.
- 6) Ecrire la condition cinématique au point C. Déduire par projection sur la base du repère R_0 , le système d'équations qui en découle et vérifier que $\dot{\lambda} = (k-1)\dot{\theta}_1\sin(\theta_2-\theta_1)$.
- 7) Par cinématique, déterminer le torseur cinématique du mouvement du solide S_4 par rapport au solide S_0 au point E. Donner la nature de ce torseur et déterminer si son axe central (s'il existe) passe par le point E.
- 8) Par composition des vitesses, déterminer en fonction de μ , $\dot{\mu}$ et θ_5 , la vitesse $\overrightarrow{V}(E \in S_6/S_0)$
- 9) Ecrire la condition cinématique au point E. Déduire par projection sur la base du repère R_0 , le système d'équations qui en découle et vérifier que $\dot{\mu} = h\dot{\theta}_4\cos(\theta_4 \theta_5) + k\dot{\theta}_1\sin(\theta_5 \theta_1)$.
- 10) Par cinématique, déterminer la vitesse $\vec{V}(G \in S_4/S_0)$ en fonction de $\dot{\theta}_1$ et $\dot{\theta}_4$.
- 11) Afin de simplifier l'étude du pilotage du robot à l'aide des 2 vérins, nous supposons que vers l'approche de la position finale, le vérin (S_2, S_3) est bloqué $(\lambda = cte; \theta_1 = cte; \theta_2 = cte)$ et que seulement le vérin (S_5, S_6) influence la valeur de θ_4 .
 - a) Exprimer $\dot{\theta}_4$ en fonction de $\dot{\mu}$, θ_4 et θ_5 .
 - b) Déterminer $\|\overrightarrow{V}(G \in 4/0)\|$ en fonction de $\dot{\theta}_4$.
 - c) Quelle est la condition sur $\dot{\mu}$ pour que le critère relatif à la fonction FS1 soit respecté?

IPEIS 4 A.U. 2020- 2021