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Abstract

Purpose – The purpose of this research is to focus on the solution of the resource sizing problem for
production systems (PSs), defined as the specification of the number of each type of resources to be
used in a production process for a given time period.

Design/methodology/approach – The resource sizing problem is tackled by a
simulation-expert-system-based approach, coupling an expert system (ES) with a simulation tool.
Hence, a number of “simulation – ES optimization” cycles are realized until obtaining non-improvable
levels of performance. The main performance measures considered in this work are related to the
manufacturing orders due dates (DD).

Findings – Through the approach proposed in this work, it is possible to size machines in order to
optimize DD related performance measures for a PS belonging to a specific application domain. PSs of
this domain are characterized by a functional layout and feature no labor constraints. In addition,
machines belonging to a same department are considered to be identical.

Originality/value – The developed approach allows studying the machine sizing problem
realistically, through the use of stochastic simulation. Also, by coupling an ES to the simulation
tool, it avoids the try and error aspect characterizing most simulation-based approaches. It hence
features a well-structured reasoning mechanism for the search of the best solution.
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Introduction
This research is interested in one of the major design issues of production systems
(PSs): the resource sizing problem. It is defined as the specification of the number of
each type of resources to be used in a production process for a given time period (Miller
and Davis, 1977). Sizing is required while designing a new or expanding an existing
system (Feyzioglu et al., 2005). The approaches that tackled this problem can be
classified in two principal categories: analytical and simulation-based.
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The former is based on mathematical models connecting parameters like production
needs and resource capacities to the required resource quantities. De Matta et al. (1999)
developed a “Branch-and-bound” algorithm for resource sizing within a flexible
manufacturing system (FMS) to minimize the resource costs along with tardiness
penalties. In addition, Lin and Yang (1996) proposed a multi-criteria approach using
the analytic hierarchy process (AHP) method for the sizing of the most suitable
machine from a range of machines available to manufacture a particular type of parts.
Nevertheless, the major disadvantage of the quasi-totality of these approaches is their
static aspect. Moreover, these approaches do not consider the dynamic and the
stochastic aspects inherent to certain factors like demand and manufacturing time
variation or the reliability of resources. Also, these approaches offer a very poor global
view of the studied system since they tackle the resource-sizing problem independently
from other problems such as scheduling, layout and material handling. So, the obtained
results lack robustness. In addition, to study real case problems, the enormous amount
of required data makes the mathematical formulations too complex to handle.
Moreover, other analytical approaches were used in conjunction with artificial
intelligence methods such as expert systems (ESs). In fact, Kusiak (1987, 1990) used an
ES to decide, according to the available data and problem size, which mathematical
model and which resolution algorithm to use. Though, the weaknesses mentioned
before are always present in spite of the intelligent aspect of the approach.

The second category encloses simulation-based approaches such as the work of
Bullinger and Sauer (1987) who determined, by simulation and in an iterative way, the
resource quantities for the system to be sized until obtaining a satisfactory state.
Equally, Dumbrava (1997) used simulation to determine the number of machines of an
FMS in order to minimize the work in process, and to obtain a good compromise
between the capacity and the productivity of the system. In the same context, Peng et al.
(2001) and Choi et al. (2002) used simulation to select the best of many pre-designed
scenarios to design a PS. Also, Patel et al. (2002) investigated ways of increasing the
throughput of a PS by simulating its operation with various levels of machines and
labor. Nevertheless, the main drawback of the majority of this kind of approaches is
their strong bond with “try and error”. On the other hand, simulation-optimization
methods have been applied to various sizing problems. Pierreval and Tautou (1997)
sized the number of resources of a food industry facility using an evolutionary
algorithm in conjunction with a simulation model. Similarly, Spieckermann et al. (2000)
coupled genetic algorithms (GA) and simulated annealing with their simulation model
for the design of an automotive manufacturing plant. Also, Cheng and Feng (2003)
developed a new mechanism that integrates simulation with GA to find the best
resource combination for a PS. Equally, Chan et al. (2000) developed an integrated
approach for the automatic design of FMSs using simulation and AHP. Nevertheless,
the use of methods such as GA or AHP helped sorting out the best solution from a very
big number of possible scenarios, but did not structure the decision process. More
recently, Feyzioglu et al. (2005) formulated the PS sizing problem as a constrained
multi-objective optimization problem and tackled it by simulation in conjunction with a
bootstrap approach which accounts for the stochastic aspect of the problem. Besides, in
order to systematize the decision-making process for the solution of the job shop
resource sizing problem, Chtourou and Guillot (1993) proposed an approach based
on the integration of simulation and an ES. Their simulation-expert-system-based
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approach (SESA) permits to obtain the performance levels set by the user through a
well-structured reasoning mechanism. However, it is deterministic and based on
irrelevant cost-related performance measures.

The main objective of this work is to develop an enhanced version of the SESA for
the machine sizing of functional-layout-based manufacturing systems. The proposed
approach is based on performance measures related to the degree of compliance with
manufacturing orders (MO) due dates (DD). It does not any longer require the setting of
target performance levels, since it seeks obtaining non-improvable ones. Moreover, this
study considers the stochastic aspect which governs MO launching as well as machine
operating parameters.

The remaining of the paper is organized as follows: the next section describes the
basic features of the SESA. Subsequently, the essential elements of the developed
simulation model are depicted under the section, PS modeling for simulation. Next
section, ES, provides a brief description of the ES that served to assess the performance
measures in order to suggest relevant modifications to the PS being sized. Then, an
illustrative example of the SESA application is presented under the section, illustrative
example. Finally, conclusions and future work prospects are discussed in the last
section.

Proposed approach
Concept
Three main types of information are required for the application of the SESA: PS data,
demand pattern and performance limits (Table I).

The simulation tool uses the PS data and demand pattern to simulate the realization
of a typical set of MOs over a given planning horizon. Simulation results are then
considered as performance measures of the system. These results, in addition to the
performance limits and relevant PS and demand pattern data constitute the ES
required inputs. The ES is in charge of analyzing the PS situation. If the simulated
system performance is found to be improvable, the ES recommends a modification to
its resources in order to overcome the problem considered to be responsible, at the
largest extent, for the low performance. Consequently, a new cycle is run until the ES
becomes unable to suggest any modifications (Figure 1). Finally, it is worth noting
that the approach can be started from any initial PS configuration assuring the
feasibility of all MOs.

Domain of application
Despite the fact that the proposed approach is not restricted neither to one type of
resources nor to a particular layout, this paper is focused on the specific machine sizing
problem of a job shop type PS. This type of PS is said to be functional-layout-based.
Hence and since no labor constraints are taken into account, operators are supposed to
be always available when needed. Moreover, in the adopted job shop layout,
functionally similar machines are grouped into departments where all machines are
supposed to be operationally identical. Also, all products are manufactured and
handled by batches of a constant size. Finally, the material handling system is
bi-directional and the distances between same department machines are negligible
compared to the ones separating departments.
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Performance measures
Most of the simulation-based sizing researches aim at maximizing the system
throughput or at minimizing the amount of work in process. Some other studies
focused on minimizing the inventory cost or on the global cost minimization.
Unfortunately, in practical applications, it is extremely difficult to define a realistic cost
function (Feyzioglu et al., 2005). Besides, in a competitive “make to order” context
characterizing the PSs of the job shop type, it is common to consider the degree of
compliance with DDs as a main objective. In fact, tardiness minimization leads to the

Type of information Details

PS data Number of departments
Initial quantity of resources within each department
Material handling system characteristics (capacity
and speed)
PT and ST on all workstations for relevant product
types

Demand pattern Batch inter-arrival times (time intervals between MO
launchings)
For each MO:
Product type
BS
Routing (sequence of required operations)
Due date (DDp)

Performance limits Maximum and minimum URs for each department
Significance threshold (S percent): a percentage of
the aggregate DD

Table I.
Required information for
the SESA application

Figure 1.
Overview of the SESA
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delay penalties minimization, whereas storage costs minimization could be achieved
through earliness minimization. Furthermore, in order to avoid superfluous investment
costs, all resources should be fully utilized.

Hence and since tardiness is usually considered as a more critical problem, the
present study mainly targets the minimization of tardiness while earliness
minimization is considered as a secondary objective. Moreover, while trying to attain
both objectives, all resources are subjected to a minimal and a maximal utilization rate
(UR) constraints. For each resource, the former depends on its investment cost whereas
the latter indirectly accounts for its availability. Hence, respecting both constraints for
each resource insures that its acquisition is relevant and that its utilization level is
realistic.

Besides, tardiness (earliness) could be assessed by the mean batch tardiness
(earliness) MT (ME) or also using the average number of batches tardy (early).
Extensive simulations, carried out in various contexts, showed that MT and ME are by
far more informative of the PS state (Masmoudi et al., 2004). Also, it is worth
mentioning that each MO DD is obtained by multiplying its total work contents (TWK)
by a user defined factor K. TWK is the sum of all processing and transportation times
required to complete the MO in an ideal situation where neither waiting nor setup are
required, whilst K expresses the DD strictness as required by the user. Furthermore,
another performance measure is crucial for the determination of the department
representing a potential bottleneck: it is the average number of batches waiting in
machine queues (nw). Nevertheless, in the presence of two departments having
practically the same nw, the average waiting time of these batches in machine queues
(wt) is used as tiebreaker. Finally, and for the sake of statistic reliability, the overall
system throughput is used as the steady state detection performance measure.

Production system modeling for simulation
The production of the typical MO pattern by the PS being sized was modelled for
simulation using the commercial tool arena (User’s Guide, 2002). The model involves
three main components discussed in the following subsections (Figure 2(a)).

MOs launching
The entry of the product batches to the PS is realized by a module that generates
individual parts at a frequency governed by an appropriate statistical rule. These parts
are then congregated into batches of a given size just after operational attributes being
assigned to them. These attributes are mainly the product type, the batch size (BS), the
processing and setup times (ST) on all relevant workstations as well as the
corresponding routing. After that, the batches are transported towards the first target
department as determined by the corresponding routing (Figure 2(b)).

Batch processing
The first task to be performed when a batch enters a machine department is the
selection of the most available machine. Such a machine is the one having the
minimum number of products in queue and in process. However, parts processing
requires a prerequisite batch splitting operation, and is followed by a reconstitution of
the original batches. In addition, every machine is modeled by a process type module.
When such a module receives a part, it seizes an available resource for a time period
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corresponding to the sum of loading/unloading and process times (PT). Additional ST
are also accounted for if the current part product type is different from the previously
processed one. The seized machine resource is subsequently released and becomes
eligible to receive another part. Furthermore, batches arriving at a busy machine wait
at its queue until it becomes available (Figure 2(c)).

System exit and performance measure gathering
Lastly, before a batch leaves the PS, it should go through an assignment module in
order to allow computing and actualizing the values of parameters defined as
performance measures and presented earlier in this paper (Figure 2(d)).

Expert system
The developed ES is an object-oriented decision-making tool. It is composed of four
main parts. First, the object base is the “static knowledge” component. The objects are
organized hierarchically into classes and sub-classes representing all problem elements
such as global PS data and departments of machines (Abel and Abel, 1988). Thus, the
department i object is a sub-class of the class “Departments of machines” which is in
turn a sub-class of the “Resources” class. Besides, the rule base is the ES component
representing the “know-how”. This expertise is expressed in terms of inference rules of
the form: “IF [condition] THEN [action]” grouped in several packs, each representing
one of the main functions of the ES (Figure 3). These are:

. Checking PS global state. The ES verifies that the global performance measures
are within the prescribed limits and that they did not significantly worsen
compared to the last cycle levels.

Figure 2.
PS simulation model
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. Determining a new ordered problem list. In case the global PS state is judged to be
acceptable, the ES searches for the potential lack/excess of resource type of
problems.

. Formulating a new ordered recommendation list. For each problem from the
determined list, the ES suggests a feasible solution, if any. For the sake of
stability, only the first solution from the obtained list is applied in the next
simulation run.

. Recuperating the remaining of last cycle recommendation list. In case the global
PS state is judged to be unacceptable, the last cycle modification is canceled and
the ES suggests the remaining of last cycle recommendation list.

Hence, the ES inference engine exploits both static and dynamic knowledge in order to
generate recommendations for PS resource modifications using a deductive reasoning
mechanism known as forward chaining. Besides, it is worth mentioning that the
iterative functioning of the approach consists of a sequence of cycles, each comprising
one or several iterations. Each iteration is an attempt to adopt one of the last cycle
recommendations. It may lead to the end of the cycle if the corresponding
recommendation is retained or else to the following iteration. The absence of any

Figure 3.
ES problem solving

scheme
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recommendations after feasibility checking means the end of the approach (Chtourou
et al., 2005).

Finally, all simulation results as well as user prescribed performance limits are
introduced via the ES user interface that serves also to communicate recommendations
about changes in resource quantities.

Illustrative example
A simple case study is here presented as an illustrative example of the SESA
application. The main characteristics of the PS and the demand pattern used in this
example are recapitulated in Table II whereas the simulation results for the first cycle
(0) are shown in Table III. In addition, the transport time between departments is equal
to 10 min. Also, it is worth mentioning that the arrival of batches is generated by a
“Poisson” law whereas the setup of the machines follows a triangular law of
distribution (Newman and Maffei, 1999).

The second phase of the same cycle 0 is the PS performance analysis carried out by
the ES. The latter established that the PS performance is improvable since the global
mean tardiness is above the acceptance threshold corresponding to 3 percent of the
aggregate DD. It then started to search for problems of lack or excess of resources in
each department. According to Table III, department M3 is the most overloaded among
the five departments since it has the greatest nw. Consequently, the recommendation
suggested for this cycle was: “adding up of one machine in department M3”. Similarly,
seven cycles were necessary to reach a non-improvable performance level. Their
respective results are summarized in Table IV.

Hence, adopting a notation where machine quantities of the five departments (M1 to
M5) are separated by “/”, the best solution was [2/1/4/3/1]. It is also worth noting that
the ES suggested adding up a machine to department M3 despite the negligible value
of MT at the end of the sixth cycle (7 minutes). Such an addition was justified by the
very high UR of department M3 (99.6 percent). Thus, the final solution presents
definitely a much improved performance as shown in Figure 4.

Moreover, as a preliminary validation of the SESA, the same example was studied
by the optimization tool Optquest integrated in the Arena simulation software. This
tool uses optimization techniques that are not unveiled to users and offers much less
flexibility than the developed ES. In fact, only one objective could be addressed at a
time. So, for the studied example and with “MT minimization” set as main objective,
the best solution reached after 150 iterations was: 2/1/5/3/1. Hence, even with a higher
computational cost, the obtained solution is more “expensive” in terms of machines
than the one determined by the SESA.

In addition, the approach was applied with a different initial PS [2/2/3/3/1] in order
to study its effect on the final solution. The latter was found to be identical to the
previously determined one and it was reached with only three cycles (Table V). Thus,
the initial PS does not seem to have an influence on the final solution, but it has an
effect on the number of cycles.

Complementary simulations also showed that the choice of the threshold S can
influence the final solutions of the SESA. In fact, referring to Table V, if S becomes
10 percent, the final solution could have been [2/2/3/3/1]. So, it is up to the PS manager
to choose between investing in more machines even if they are not fully utilized

JMTM
17,2

194



D
et

ai
ls

D
ep
a
rt
m
en
t

P
ro
d
u
ct
ty
pe

P
T
(m

in
)

S
T
(m

in
)

P
S

d
at

a
M

1
P

1
5

T
ri

an
g

u
la

r
(2

0,
25

,
30

)
P

3
5

T
ri

an
g

u
la

r
(2

0,
25

,
30

)
M

2
P

1
3

T
ri

an
g

u
la

r
(2

5,
30

,
35

)
P

2
3

T
ri

an
g

u
la

r
(2

5,
30

,
35

)
M

3
P

1
12

T
ri

an
g

u
la

r
(1

15
,

12
0,

12
5)

P
2

10
T

ri
an

g
u

la
r

(9
5,

10
0,

10
5)

M
4

P
2

7
T

ri
an

g
u

la
r

(1
00

,
10

5,
11

0)
P

3
10

T
ri

an
g

u
la

r
(1

45
,

15
0,

15
5)

M
5

P
3

5
T

ri
an

g
u

la
r

(7
0,

75
,

80
)

P
ro
d
u
ct
ty
pe

R
ou
ti
n
g
st
ep

D
ep
a
rt
m
en
t

B
S

In
te
r
a
rr
iv
a
l
la
w
(m

in
)

T
W
K

(m
in
)

D
D
p
(m

in
)

D
em

an
d

p
at

te
rn

P
1

1
M

3
10

P
oi

ss
on

(1
20

)
22

0
2,

20
0

2
M

1
3

M
2

P
2

1
M

2
10

P
oi

ss
on

(1
20

)
22

0
2,

20
0

2
M

3
3

M
4

P
3

1
M

1
10

P
oi

ss
on

(1
20

)
22

0
2,

20
0

2
M

4
3

M
5

L
im

it
V
a
lu
e
(p
er
ce
n
t)

P
er

fo
rm

an
ce

li
m

it
s

U
R

m
in

a
20

U
R

m
a
x

a
90

S
3

N
o
te

:
a
F

or
ea

ch
d

ep
ar

tm
en

t

Table II.
Example required

information

An approach for
machine sizing

of PSs

195



and this, in order to further minimize MT (very low S), or accepting a slightly MT in
order to save on investments (fairly high S).

Conclusion
This study presented an enhanced version of the SESA coupling an ES and a
simulation tool for the machine sizing of a PS. The current version uses performance
measures that are adapted to the DD characterized “make to order” production context.
It also allows for considering the stochastic aspect governing several manufacturing
facets. The approach permitted to obtain satisfactory preliminary results in the sizing
of a simple PS belonging to predefined domain of application.

Finally, many aspects of the approach are currently being developed. They
mainly are:

. Enlargement of the domain of application and consequently, enrichment of the
simulation model by incorporating other types of resources and by considering
resource reliability and routing flexibility. This should allow applying and
validating the approach on real cases.

. Enrichment of the reasoning mechanism by incorporating new knowledge
acquired from sets of planned simulations.

. Thorough investigation of the approach robustness and applicability in various
scenarios.

MT ¼ 28,548 minutes
Department Machine number nw (batches) UR (percent)

M1 1 0 73.2
M2 1 0 49.5
M3 1 670 100
M4 1 231 100
M5 1 0 8

Table III.
Simulation results of
cycle 0

Figure 4.
MT evolution
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